From 93c220469c1517d92cb7d103254df026c452eaec Mon Sep 17 00:00:00 2001
From: Baptiste Bauvin <baptiste.bauvin@lis-lab.fr>
Date: Thu, 10 Oct 2019 10:26:37 -0400
Subject: [PATCH] Revmoved commentaries

---
 multiview_platform/tests/test_ExecClassif.py  | 302 -------
 .../tests/test_utils/test_GetMultiviewDB.py   | 854 +-----------------
 2 files changed, 1 insertion(+), 1155 deletions(-)

diff --git a/multiview_platform/tests/test_ExecClassif.py b/multiview_platform/tests/test_ExecClassif.py
index 84f4c5f5..c3c8b6c3 100644
--- a/multiview_platform/tests/test_ExecClassif.py
+++ b/multiview_platform/tests/test_ExecClassif.py
@@ -499,308 +499,6 @@ class Test_get_path_dict(unittest.TestCase):
         self.assertEqual(path_dict, {"a.b.c.d.e":1, "a.b.c.d.f":[1]})
 
 
-#
-# class Test_analyzeMulticlass(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         cls.flags = [[0, [0,1]], [0, [0,2]], [0, [0,3]], [0, [1,2]], [0, [1,3]], [0, [2,3]],
-#                      [1, [0,1]], [1, [0,2]], [1, [0,3]], [1, [1,2]], [1, [1,3]], [1, [2,3]]]
-#         cls.preds = [np.array([1, 0, 1, 1, 1]), np.array([1,0,0,1,1]), np.array([1,0,0,0,1]), np.array([1,1,0,1,1]),
-#                      np.array([1,1,0,0,1]), np.array([1,1,1,0,1])] + \
-#                     [np.array([0 in range(5)]) for i in range(6)]
-#         cls.preds2 = [np.array([0 in range(5)]) for i in range(6)] + \
-#                     [np.array([1, 0, 1, 1, 1]), np.array([1,0,0,1,1]),
-#                      np.array([1,0,0,0,1]), np.array([1,1,0,1,1]), np.array([1,1,0,0,1]), np.array([1,1,1,0,1])]
-#         cls.classifiers_names = ["chicken_is_heaven", "chicken_is_heaven", "chicken_is_heaven", "chicken_is_heaven",
-#                                 "chicken_is_heaven", "chicken_is_heaven", "chicken_is_heaven", "chicken_is_heaven",
-#                                 "chicken_is_heaven", "chicken_is_heaven", "chicken_is_heaven", "chicken_is_heaven",]
-#         cls.classifiersNames2 = ["cheese_is_no_disease", "cheese_is_no_disease", "cheese_is_no_disease",
-#                                 "cheese_is_no_disease", "cheese_is_no_disease", "cheese_is_no_disease",
-#                                 "cheese_is_no_disease", "cheese_is_no_disease", "cheese_is_no_disease",
-#                                 "cheese_is_no_disease", "cheese_is_no_disease", "cheese_is_no_disease"]
-#         cls.results = [[flag, [["", [name, "", "", pred]], ["", [name1, "", "", pred1]]], ["", ""]]
-#                        for flag, name, pred, name1, pred1 in zip(cls.flags, cls.classifiers_names, cls.preds,
-#                                                                  cls.classifiersNames2, cls.preds2)]
-#         # cls.results = [[flag, ["", ["", name, "", pred]], ""] for flag, pred, name in
-#         #                zip(cls.flags, cls.preds, cls.classifiers_names)]
-#         cls.statsIter = 2
-#         cls.nbExample = 5
-#         cls.nbLabels = 4
-#         cls.true_labels = np.array([0,1,2,3,0])
-#         cls.metrics = [["accuracy_score"]]
-#
-#     def test_simple(cls):
-#         multiclassResults = ExecClassif.analyzeMulticlass(cls.results, cls.statsIter, cls.nbExample, cls.nbLabels, cls.true_labels, [["accuracy_score"]])
-#         np.testing.assert_array_equal(multiclassResults[1]["chicken_is_heaven"]["labels"], cls.true_labels)
-#
-# class Test_genMetricsScores(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         cls.multiclass_labels = np.array([0,1,2,3,4,5,2,1,3])
-#         cls.wrong_labels = np.array([1,3,3,4,5,0,2,4,3])
-#         cls.multiclassResults = [{"chicken_is_heaven":
-#                                       {"labels": cls.multiclass_labels}}]
-#         cls.true_labels = np.array([0,2,2,3,4,5,1,3,2])
-#         cls.metrics = [["accuracy_score"]]
-#         cls.score_to_get = accuracy_score(cls.true_labels, cls.multiclass_labels)
-#
-#     def test_simple(cls):
-#         multiclassResults = ExecClassif.genMetricsScores(cls.multiclassResults, cls.true_labels, cls.metrics)
-#         cls.assertEqual(cls.score_to_get, multiclassResults[0]["chicken_is_heaven"]["metricsScores"]["accuracy_score"])
-#
-#     def test_multiple_clf(cls):
-#         cls.multiclassResults = [{"chicken_is_heaven": {"labels": cls.multiclass_labels},
-#                                   "cheese_is_no_disease": {"labels": cls.wrong_labels}},
-#                                  ]
-#         multiclassResults = ExecClassif.genMetricsScores(cls.multiclassResults, cls.true_labels, cls.metrics)
-#         cls.assertEqual(0, multiclassResults[0]["cheese_is_no_disease"]["metricsScores"]["accuracy_score"])
-#         cls.assertEqual(cls.score_to_get, multiclassResults[0]["chicken_is_heaven"]["metricsScores"]["accuracy_score"])
-#
-#     def test_multiple_metrics(cls):
-#         from sklearn.metrics import f1_score
-#         cls.score_to_get_f1 = f1_score(cls.true_labels, cls.multiclass_labels, average="micro")
-#         cls.metrics = [["accuracy_score"], ["f1_score"]]
-#         multiclassResults = ExecClassif.genMetricsScores(cls.multiclassResults, cls.true_labels, cls.metrics)
-#         cls.assertEqual(cls.score_to_get, multiclassResults[0]["chicken_is_heaven"]["metricsScores"]["accuracy_score"])
-#         cls.assertEqual(cls.score_to_get_f1, multiclassResults[0]["chicken_is_heaven"]["metricsScores"]["f1_score"])
-#
-#     def test_multiple_iterations(cls):
-#         cls.multiclassResults = [{"chicken_is_heaven": {"labels": cls.multiclass_labels}},
-#                                  {"chicken_is_heaven": {"labels": cls.wrong_labels}},
-#                                  ]
-#         multiclassResults = ExecClassif.genMetricsScores(cls.multiclassResults, cls.true_labels, cls.metrics)
-#         cls.assertEqual(0, multiclassResults[1]["chicken_is_heaven"]["metricsScores"]["accuracy_score"])
-#         cls.assertEqual(cls.score_to_get, multiclassResults[0]["chicken_is_heaven"]["metricsScores"]["accuracy_score"])
-#
-#     def test_all(cls):
-#         cls.multiclassResults = [{"chicken_is_heaven": {"labels": cls.multiclass_labels},
-#                                                           "cheese_is_no_disease": {"labels": cls.wrong_labels}},
-#                                                          {"chicken_is_heaven": {"labels": cls.wrong_labels},
-#                                                           "cheese_is_no_disease": {"labels": cls.multiclass_labels}},
-#                                                          ]
-#         cls.metrics = [["accuracy_score"], ["f1_score"]]
-#         from sklearn.metrics import f1_score
-#         cls.score_to_get_f1 = f1_score(cls.true_labels, cls.multiclass_labels, average="micro")
-#         multiclassResults = ExecClassif.genMetricsScores(cls.multiclassResults, cls.true_labels, cls.metrics)
-#         cls.assertEqual(0, multiclassResults[1]["chicken_is_heaven"]["metricsScores"]["accuracy_score"])
-#         cls.assertEqual(cls.score_to_get_f1, multiclassResults[1]["cheese_is_no_disease"]["metricsScores"]["f1_score"])
-#
-#
-# class Test_getErrorOnLabels(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         cls.multiclass_labels = np.array([0,1,2,3,4,5,2,1,3])
-#         cls.wrong_labels = np.array([1,3,3,4,5,0,2,4,3])
-#         cls.multiclassResults = [{"chicken_is_heaven":
-#                                       {"labels": cls.multiclass_labels}}]
-#         cls.true_labels = np.array([0,2,2,3,4,5,1,3,2])
-#
-#     def test_simple(cls):
-#         multiclassResults = ExecClassif.getErrorOnLabels(cls.multiclassResults, cls.true_labels)
-#         np.testing.assert_array_equal(np.array([1, 0, 1, 1, 1, 1, 0, 0, 0]),
-#                                       multiclassResults[0]["chicken_is_heaven"]["errorOnExample"])
-#
-#     def test_full(cls):
-#         cls.multiclassResults = [{"chicken_is_heaven": {"labels": cls.multiclass_labels},
-#                                   "cheese_is_no_disease": {"labels": cls.wrong_labels}},
-#                                  {"chicken_is_heaven": {"labels": cls.wrong_labels},
-#                                   "cheese_is_no_disease": {"labels": cls.wrong_labels}},
-#                                  ]
-#         multiclassResults = ExecClassif.getErrorOnLabels(cls.multiclassResults, cls.true_labels)
-#         np.testing.assert_array_equal(np.array([1, 0, 1, 1, 1, 1, 0, 0, 0]),
-#                                       multiclassResults[0]["chicken_is_heaven"]["errorOnExample"])
-#         np.testing.assert_array_equal(np.array([0, 0, 0, 0, 0, 0, 0, 0, 0]),
-#                                       multiclassResults[1]["cheese_is_no_disease"]["errorOnExample"])
-#
-#     def test_type(cls):
-#         multiclassResults = ExecClassif.getErrorOnLabels(cls.multiclassResults, cls.true_labels)
-#         cls.assertEqual(type(multiclassResults[0]["chicken_is_heaven"]["errorOnExample"][0]), np.int64)
-#         np.testing.assert_array_equal(np.array([1, 0, 1, 1, 1, 1, 0, 0, 0]),
-#                                       multiclassResults[0]["chicken_is_heaven"]["errorOnExample"])
-#
-# class Essai(unittest.TestCase):
-#
-#     def setUp(self):
-#         parser = argparse.ArgumentParser(
-#             description='This file is used to benchmark the scores fo multiple classification algorithm on multiview data.',
-#             formatter_class=argparse.ArgumentDefaultsHelpFormatter)
-#
-#         groupStandard = parser.add_argument_group('Standard arguments')
-#         groupStandard.add_argument('-log', action='store_true', help='Use option to activate Logging to Console')
-#         groupStandard.add_argument('--name', metavar='STRING', action='store', help='Name of Database (default: %(default)s)',
-#                                    default='Plausible')
-#         groupStandard.add_argument('--type', metavar='STRING', action='store',
-#                                    help='Type of database : .hdf5 or .csv (default: %(default)s)',
-#                                    default='.hdf5')
-#         groupStandard.add_argument('--views', metavar='STRING', action='store', nargs="+",
-#                                    help='Name of the views selected for learning (default: %(default)s)',
-#                                    default=[''])
-#         groupStandard.add_argument('--pathF', metavar='STRING', action='store', help='Path to the views (default: %(default)s)',
-#                                    default='/home/bbauvin/Documents/data/Data_multi_omics/')
-#         groupStandard.add_argument('--nice', metavar='INT', action='store', type=int,
-#                                    help='Niceness for the process', default=0)
-#         groupStandard.add_argument('--random_state', metavar='STRING', action='store',
-#                                    help="The random state seed to use or a file where we can find it's get_state", default=None)
-#
-#         groupClass = parser.add_argument_group('Classification arguments')
-#         groupClass.add_argument('--CL_split', metavar='FLOAT', action='store',
-#                                 help='Determine the split between learning and validation sets', type=float,
-#                                 default=0.2)
-#         groupClass.add_argument('--CL_nbFolds', metavar='INT', action='store', help='Number of folds in cross validation',
-#                                 type=int, default=2)
-#         groupClass.add_argument('--CL_nb_class', metavar='INT', action='store', help='Number of classes, -1 for all', type=int,
-#                                 default=2)
-#         groupClass.add_argument('--CL_classes', metavar='STRING', action='store', nargs="+",
-#                                 help='Classes used in the dataset (names of the folders) if not filled, random classes will be '
-#                                      'selected ex. walrus mole leopard', default=["yes", "no"])
-#         groupClass.add_argument('--CL_type', metavar='STRING', action='store', nargs="+",
-#                                 help='Determine whether to use multiview and/or monoview, or Benchmark',
-#                                 default=['Benchmark'])
-#         groupClass.add_argument('--CL_algos_monoview', metavar='STRING', action='store', nargs="+",
-#                                 help='Determine which monoview classifier to use if empty, considering all',
-#                                 default=[''])
-#         groupClass.add_argument('--CL_algos_multiview', metavar='STRING', action='store', nargs="+",
-#                                 help='Determine which multiview classifier to use if empty, considering all',
-#                                 default=[''])
-#         groupClass.add_argument('--CL_cores', metavar='INT', action='store', help='Number of cores, -1 for all', type=int,
-#                                 default=2)
-#         groupClass.add_argument('--CL_statsiter', metavar='INT', action='store',
-#                                 help="Number of iteration for each algorithm to mean preds if using multiple cores, it's highly recommended to use statsiter mod(nbCores) = 0",
-#                                 type=int,
-#                                 default=2)
-#         groupClass.add_argument('--CL_metrics', metavar='STRING', action='store', nargs="+",
-#                                 help='Determine which metrics to use, separate metric and configuration with ":".'
-#                                      ' If multiple, separate with space. If no metric is specified, '
-#                                      'considering all with accuracy for classification '
-#                                 , default=[''])
-#         groupClass.add_argument('--CL_metric_princ', metavar='STRING', action='store',
-#                                 help='Determine which metric to use for randomSearch and optimization', default="f1_score")
-#         groupClass.add_argument('--CL_GS_iter', metavar='INT', action='store',
-#                                 help='Determine how many Randomized grid search tests to do', type=int, default=2)
-#         groupClass.add_argument('--CL_HPS_type', metavar='STRING', action='store',
-#                                 help='Determine which hyperparamter search function use', default="randomizedSearch")
-#
-#         groupRF = parser.add_argument_group('Random Forest arguments')
-#         groupRF.add_argument('--CL_RandomForest_trees', metavar='INT', type=int, action='store', help='Number max trees',
-#                              default=25)
-#         groupRF.add_argument('--CL_RandomForest_max_depth', metavar='INT', type=int, action='store',
-#                              help='Max depth for the trees',
-#                              default=5)
-#         groupRF.add_argument('--CL_RandomForest_criterion', metavar='STRING', action='store', help='Criterion for the trees',
-#                              default="entropy")
-#
-#         groupSVMLinear = parser.add_argument_group('Linear SVM arguments')
-#         groupSVMLinear.add_argument('--CL_SVMLinear_C', metavar='INT', type=int, action='store', help='Penalty parameter used',
-#                                     default=1)
-#
-#         groupSVMRBF = parser.add_argument_group('SVW-RBF arguments')
-#         groupSVMRBF.add_argument('--CL_SVMRBF_C', metavar='INT', type=int, action='store', help='Penalty parameter used',
-#                                  default=1)
-#
-#         groupSVMPoly = parser.add_argument_group('Poly SVM arguments')
-#         groupSVMPoly.add_argument('--CL_SVMPoly_C', metavar='INT', type=int, action='store', help='Penalty parameter used',
-#                                   default=1)
-#         groupSVMPoly.add_argument('--CL_SVMPoly_deg', metavar='INT', type=int, action='store', help='Degree parameter used',
-#                                   default=2)
-#
-#         groupAdaboost = parser.add_argument_group('Adaboost arguments')
-#         groupAdaboost.add_argument('--CL_Adaboost_n_est', metavar='INT', type=int, action='store', help='Number of estimators',
-#                                    default=2)
-#         groupAdaboost.add_argument('--CL_Adaboost_b_est', metavar='STRING', action='store', help='Estimators',
-#                                    default='DecisionTreeClassifier')
-#
-#         groupDT = parser.add_argument_group('Decision Trees arguments')
-#         groupDT.add_argument('--CL_DecisionTree_depth', metavar='INT', type=int, action='store',
-#                              help='Determine max depth for Decision Trees', default=3)
-#         groupDT.add_argument('--CL_DecisionTree_criterion', metavar='STRING', action='store',
-#                              help='Determine max depth for Decision Trees', default="entropy")
-#         groupDT.add_argument('--CL_DecisionTree_splitter', metavar='STRING', action='store',
-#                              help='Determine criterion for Decision Trees', default="random")
-#
-#         groupSGD = parser.add_argument_group('SGD arguments')
-#         groupSGD.add_argument('--CL_SGD_alpha', metavar='FLOAT', type=float, action='store',
-#                               help='Determine alpha for SGDClassifier', default=0.1)
-#         groupSGD.add_argument('--CL_SGD_loss', metavar='STRING', action='store',
-#                               help='Determine loss for SGDClassifier', default='log')
-#         groupSGD.add_argument('--CL_SGD_penalty', metavar='STRING', action='store',
-#                               help='Determine penalty for SGDClassifier', default='l2')
-#
-#         groupKNN = parser.add_argument_group('KNN arguments')
-#         groupKNN.add_argument('--CL_KNN_neigh', metavar='INT', type=int, action='store',
-#                               help='Determine number of neighbors for KNN', default=1)
-#         groupKNN.add_argument('--CL_KNN_weights', metavar='STRING', action='store',
-#                               help='Determine number of neighbors for KNN', default="distance")
-#         groupKNN.add_argument('--CL_KNN_algo', metavar='STRING', action='store',
-#                               help='Determine number of neighbors for KNN', default="auto")
-#         groupKNN.add_argument('--CL_KNN_p', metavar='INT', type=int, action='store',
-#                               help='Determine number of neighbors for KNN', default=1)
-#
-#         groupSCM = parser.add_argument_group('SCM arguments')
-#         groupSCM.add_argument('--CL_SCM_max_rules', metavar='INT', type=int, action='store',
-#                               help='Max number of rules for SCM', default=1)
-#         groupSCM.add_argument('--CL_SCM_p', metavar='FLOAT', type=float, action='store',
-#                               help='Max number of rules for SCM', default=1.0)
-#         groupSCM.add_argument('--CL_SCM_model_type', metavar='STRING', action='store',
-#                               help='Max number of rules for SCM', default="conjunction")
-#
-#         groupMumbo = parser.add_argument_group('Mumbo arguments')
-#         groupMumbo.add_argument('--MU_types', metavar='STRING', action='store', nargs="+",
-#                                 help='Determine which monoview classifier to use with Mumbo',
-#                                 default=[''])
-#         groupMumbo.add_argument('--MU_config', metavar='STRING', action='store', nargs='+',
-#                                 help='Configuration for the monoview classifier in Mumbo separate each classifier with sapce and each argument with:',
-#                                 default=[''])
-#         groupMumbo.add_argument('--MU_iter', metavar='INT', action='store', nargs=3,
-#                                 help='Max number of iteration, min number of iteration, convergence threshold', type=float,
-#                                 default=[10, 1, 0.01])
-#         groupMumbo.add_argument('--MU_combination', action='store_true',
-#                                 help='Try all the monoview classifiers combinations for each view',
-#                                 default=False)
-#
-#
-#         groupFusion = parser.add_argument_group('fusion arguments')
-#         groupFusion.add_argument('--FU_types', metavar='STRING', action='store', nargs="+",
-#                                  help='Determine which type of fusion to use',
-#                                  default=[''])
-#         groupEarlyFusion = parser.add_argument_group('Early fusion arguments')
-#         groupEarlyFusion.add_argument('--FU_early_methods', metavar='STRING', action='store', nargs="+",
-#                                       help='Determine which early fusion method of fusion to use',
-#                                       default=[''])
-#         groupEarlyFusion.add_argument('--FU_E_method_configs', metavar='STRING', action='store', nargs='+',
-#                                       help='Configuration for the early fusion methods separate '
-#                                            'method by space and values by :',
-#                                       default=[''])
-#         groupEarlyFusion.add_argument('--FU_E_cl_config', metavar='STRING', action='store', nargs='+',
-#                                       help='Configuration for the monoview classifiers used separate classifier by space '
-#                                            'and configs must be of form argument1_name:value,argument2_name:value',
-#                                       default=[''])
-#         groupEarlyFusion.add_argument('--FU_E_cl_names', metavar='STRING', action='store', nargs='+',
-#                                       help='Name of the classifiers used for each early fusion method', default=[''])
-#
-#         groupLateFusion = parser.add_argument_group('Late Early fusion arguments')
-#         groupLateFusion.add_argument('--FU_late_methods', metavar='STRING', action='store', nargs="+",
-#                                      help='Determine which late fusion method of fusion to use',
-#                                      default=[''])
-#         groupLateFusion.add_argument('--FU_L_method_config', metavar='STRING', action='store', nargs='+',
-#                                      help='Configuration for the fusion method', default=[''])
-#         groupLateFusion.add_argument('--FU_L_cl_config', metavar='STRING', action='store', nargs='+',
-#                                      help='Configuration for the monoview classifiers used', default=[''])
-#         groupLateFusion.add_argument('--FU_L_cl_names', metavar='STRING', action='store', nargs="+",
-#                                      help='Names of the classifier used for late fusion', default=[''])
-#         groupLateFusion.add_argument('--FU_L_select_monoview', metavar='STRING', action='store',
-#                                      help='Determine which method to use to select the monoview classifiers',
-#                                      default="intersect")
-#         self.args = parser.parse_args([])
-
-
-# def suite():
-#     suite = unittest.TestSuite()
-#     suite.addTest(Test_initBenchmark('test_initKWARGSFunc_no_monoview'))
-#     # suite.addTest(WidgetTestCase('test_widget_resize'))
-#     return suite
 
 if __name__ == '__main__':
     unittest.main()
\ No newline at end of file
diff --git a/multiview_platform/tests/test_utils/test_GetMultiviewDB.py b/multiview_platform/tests/test_utils/test_GetMultiviewDB.py
index 91c283aa..1f1c3b0a 100644
--- a/multiview_platform/tests/test_utils/test_GetMultiviewDB.py
+++ b/multiview_platform/tests/test_utils/test_GetMultiviewDB.py
@@ -5,780 +5,12 @@ import h5py
 import numpy as np
 
 from ...mono_multi_view_classifiers.utils import get_multiview_db
-# <<<<<<< HEAD
-# from ..utils import rm_tmp, tmp_path
-#
-#
-# class Test_copyhdf5Dataset(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         rm_tmp()
-#         cls.random_state = np.random.RandomState(42)
-#         if not os.path.exists("multiview_platform/tests/tmp_tests"):
-#             os.mkdir("multiview_platform/tests/tmp_tests")
-#         cls.dataset_file = h5py.File(
-#             tmp_path+"test_copy.hdf5", "w")
-#         cls.dataset = cls.dataset_file.create_dataset("test",
-#                                                       data=cls.random_state.randint(
-#                                                           0, 100, (10, 20)))
-#         cls.dataset.attrs["test_arg"] = "Am I copied"
-#
-#     def test_simple_copy(self):
-#         get_multiview_db.copyhdf5_dataset(self.dataset_file, self.dataset_file,
-#                                        "test", "test_copy_1", np.arange(10))
-#         np.testing.assert_array_equal(self.dataset_file.get("test").value,
-#                                       self.dataset_file.get("test_copy_1").value)
-#         self.assertEqual("Am I copied",
-#                         self.dataset_file.get("test_copy_1").attrs["test_arg"])
-#
-#     def test_copy_only_some_indices(self):
-#         usedIndices = self.random_state.choice(10, 6, replace=False)
-#         get_multiview_db.copyhdf5_dataset(self.dataset_file, self.dataset_file,
-#                                        "test", "test_copy", usedIndices)
-#         np.testing.assert_array_equal(
-#             self.dataset_file.get("test").value[usedIndices, :],
-#             self.dataset_file.get("test_copy").value)
-#         self.assertEqual("Am I copied",
-#                         self.dataset_file.get("test_copy").attrs["test_arg"])
-#
-#     @classmethod
-#     def tearDownClass(cls):
-#         os.remove(tmp_path+"test_copy.hdf5")
-#         os.rmdir("multiview_platform/tests/tmp_tests")
-#
-#
-# class Test_filterViews(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         rm_tmp()
-#         cls.random_state = np.random.RandomState(42)
-#         cls.views = ["test_view_1", "test_view_2"]
-#         if not os.path.exists("multiview_platform/tests/tmp_tests"):
-#             os.mkdir("multiview_platform/tests/tmp_tests")
-#         cls.dataset_file = h5py.File(
-#             tmp_path+"test_copy.hdf5", "w")
-#         cls.metadata_group = cls.dataset_file.create_group("Metadata")
-#         cls.metadata_group.attrs["nbView"] = 4
-#
-#         for i in range(4):
-#             cls.dataset = cls.dataset_file.create_dataset("View" + str(i),
-#                                                           data=cls.random_state.randint(
-#                                                               0, 100, (10, 20)))
-#             cls.dataset.attrs["name"] = "test_view_" + str(i)
-#
-#     def test_simple_filter(self):
-#         self.temp_dataset_file = h5py.File(
-#             tmp_path+"test_copy_temp.hdf5", "w")
-#         self.dataset_file.copy("Metadata", self.temp_dataset_file)
-#         get_multiview_db.filter_views(self.dataset_file, self.temp_dataset_file,
-#                                      self.views, np.arange(10))
-#         self.assertEqual(self.dataset_file.get("View1").attrs["name"],
-#                         self.temp_dataset_file.get("View0").attrs["name"])
-#         np.testing.assert_array_equal(self.dataset_file.get("View2").value,
-#                                       self.temp_dataset_file.get("View1").value)
-#         self.assertEqual(self.temp_dataset_file.get("Metadata").attrs["nbView"],
-#                         2)
-#
-#     def test_filter_view_and_examples(self):
-#         self.temp_dataset_file = h5py.File(
-#             tmp_path+"test_copy_temp.hdf5", "w")
-#         self.dataset_file.copy("Metadata", self.temp_dataset_file)
-#         usedIndices = self.random_state.choice(10, 6, replace=False)
-#         get_multiview_db.filter_views(self.dataset_file, self.temp_dataset_file,
-#                                      self.views, usedIndices)
-#         np.testing.assert_array_equal(
-#             self.dataset_file.get("View1").value[usedIndices, :],
-#             self.temp_dataset_file.get("View0").value)
-#         self.temp_dataset_file.close()
-#
-#     @classmethod
-#     def tearDownClass(cls):
-#         os.remove(tmp_path+"test_copy.hdf5")
-#         os.remove(tmp_path+"test_copy_temp.hdf5")
-#         os.rmdir("multiview_platform/tests/tmp_tests")
-# =======
 from ..utils import rm_tmp, tmp_path, test_dataset
-# >>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd
-
-
-# class Test_copyhdf5Dataset(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         rm_tmp()
-#         cls.random_state = np.random.RandomState(42)
-#         if not os.path.exists("multiview_platform/tests/tmp_tests"):
-#             os.mkdir("multiview_platform/tests/tmp_tests")
-#         cls.dataset_file = h5py.File(
-#             tmp_path+"test_copy.hdf5", "w")
-#         cls.dataset = cls.dataset_file.create_dataset("test",
-#                                                       data=cls.random_state.randint(
-#                                                           0, 100, (10, 20)))
-#         cls.dataset.attrs["test_arg"] = "Am I copied"
-#
-#     def test_simple_copy(cls):
-#         get_multiview_db.copyhdf5_dataset(cls.dataset_file, cls.dataset_file,
-#                                        "test", "test_copy_1", np.arange(10))
-#         np.testing.assert_array_equal(cls.dataset_file.get("test").value,
-#                                       cls.dataset_file.get("test_copy_1").value)
-#         cls.assertEqual("Am I copied",
-#                         cls.dataset_file.get("test_copy_1").attrs["test_arg"])
-#
-#     def test_copy_only_some_indices(cls):
-#         usedIndices = cls.random_state.choice(10, 6, replace=False)
-#         get_multiview_db.copyhdf5_dataset(cls.dataset_file, cls.dataset_file,
-#                                        "test", "test_copy", usedIndices)
-#         np.testing.assert_array_equal(
-#             cls.dataset_file.get("test").value[usedIndices, :],
-#             cls.dataset_file.get("test_copy").value)
-#         cls.assertEqual("Am I copied",
-#                         cls.dataset_file.get("test_copy").attrs["test_arg"])
-#
-#     @classmethod
-#     def tearDownClass(cls):
-#         os.remove(tmp_path+"test_copy.hdf5")
-#         os.rmdir("multiview_platform/tests/tmp_tests")
-#
-#
-# class Test_filterViews(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         rm_tmp()
-#         cls.random_state = np.random.RandomState(42)
-#         cls.views = ["test_view_1", "test_view_2"]
-#         if not os.path.exists("multiview_platform/tests/tmp_tests"):
-#             os.mkdir("multiview_platform/tests/tmp_tests")
-#         cls.dataset_file = h5py.File(
-#             tmp_path+"test_copy.hdf5", "w")
-#         cls.metadata_group = cls.dataset_file.create_group("Metadata")
-#         cls.metadata_group.attrs["nbView"] = 4
-#
-#         for i in range(4):
-#             cls.dataset = cls.dataset_file.create_dataset("View" + str(i),
-#                                                           data=cls.random_state.randint(
-#                                                               0, 100, (10, 20)))
-#             cls.dataset.attrs["name"] = "test_view_" + str(i)
-#
-#     def test_simple_filter(cls):
-#         cls.temp_dataset_file = h5py.File(
-#             tmp_path+"test_copy_temp.hdf5", "w")
-#         cls.dataset_file.copy("Metadata", cls.temp_dataset_file)
-#         get_multiview_db.filter_views(cls.dataset_file, cls.temp_dataset_file,
-#                                      cls.views, np.arange(10))
-#         cls.assertEqual(cls.dataset_file.get("View1").attrs["name"],
-#                         cls.temp_dataset_file.get("View0").attrs["name"])
-#         np.testing.assert_array_equal(cls.dataset_file.get("View2").value,
-#                                       cls.temp_dataset_file.get("View1").value)
-#         cls.assertEqual(cls.temp_dataset_file.get("Metadata").attrs["nbView"],
-#                         2)
-#
-#     def test_filter_view_and_examples(cls):
-#         cls.temp_dataset_file = h5py.File(
-#             tmp_path+"test_copy_temp.hdf5", "w")
-#         cls.dataset_file.copy("Metadata", cls.temp_dataset_file)
-#         usedIndices = cls.random_state.choice(10, 6, replace=False)
-#         get_multiview_db.filter_views(cls.dataset_file, cls.temp_dataset_file,
-#                                      cls.views, usedIndices)
-#         np.testing.assert_array_equal(
-#             cls.dataset_file.get("View1").value[usedIndices, :],
-#             cls.temp_dataset_file.get("View0").value)
-#         cls.temp_dataset_file.close()
-#
-#     @classmethod
-#     def tearDownClass(cls):
-#         os.remove(tmp_path+"test_copy.hdf5")
-#         os.remove(tmp_path+"test_copy_temp.hdf5")
-#         os.rmdir("multiview_platform/tests/tmp_tests")
-#
-#
-# #
-# class Test_filterLabels(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         cls.random_state = np.random.RandomState(42)
-#         cls.labelsSet = set(range(4))
-#         cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"}
-#         cls.fullLabels = cls.random_state.randint(0, 4, 10)
-#         cls.availableLabelsNames = ["test_label_0", "test_label_1",
-#                                     "test_label_2", "test_label_3"]
-#         cls.askedLabelsNames = ["test_label_1", "test_label_3"]
-#
-#     def test_simple(cls):
-#         newLabels, \
-#         newLabelsNames, \
-#         usedIndices = get_multiview_db.filter_labels(cls.labelsSet,
-#                                                     cls.askedLabelsNamesSet,
-#                                                     cls.fullLabels,
-#                                                     cls.availableLabelsNames,
-#                                                     cls.askedLabelsNames)
-#         cls.assertEqual(["test_label_1", "test_label_3"], newLabelsNames)
-#         np.testing.assert_array_equal(usedIndices, np.array([1, 5, 9]))
-#         np.testing.assert_array_equal(newLabels, np.array([1, 1, 0]))
-#
-#     def test_biclasse(cls):
-#         cls.labelsSet = {0, 1}
-#         cls.fullLabels = cls.random_state.randint(0, 2, 10)
-#         cls.availableLabelsNames = ["test_label_0", "test_label_1"]
-#         newLabels, \
-#         newLabelsNames, \
-#         usedIndices = get_multiview_db.filter_labels(cls.labelsSet,
-#                                                     cls.askedLabelsNamesSet,
-#                                                     cls.fullLabels,
-#                                                     cls.availableLabelsNames,
-#                                                     cls.askedLabelsNames)
-#         cls.assertEqual(cls.availableLabelsNames, newLabelsNames)
-#         np.testing.assert_array_equal(usedIndices, np.arange(10))
-#         np.testing.assert_array_equal(newLabels, cls.fullLabels)
-#
-#     def test_asked_too_many_labels(cls):
-#         cls.askedLabelsNamesSet = {"test_label_0", "test_label_1",
-#                                    "test_label_2", "test_label_3",
-#                                    "chicken_is_heaven"}
-#         with cls.assertRaises(get_multiview_db.DatasetError) as catcher:
-#             get_multiview_db.filter_labels(cls.labelsSet,
-#                                           cls.askedLabelsNamesSet,
-#                                           cls.fullLabels,
-#                                           cls.availableLabelsNames,
-#                                           cls.askedLabelsNames)
-#         exception = catcher.exception
-#
-#     def test_asked_all_labels(cls):
-#         cls.askedLabelsNamesSet = {"test_label_0", "test_label_1",
-#                                    "test_label_2", "test_label_3"}
-#         cls.askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
-#                                 "test_label_3"]
-#         newLabels, \
-#         newLabelsNames, \
-#         usedIndices = get_multiview_db.filter_labels(cls.labelsSet,
-#                                                     cls.askedLabelsNamesSet,
-#                                                     cls.fullLabels,
-#                                                     cls.availableLabelsNames,
-#                                                     cls.askedLabelsNames)
-#         cls.assertEqual(cls.availableLabelsNames, newLabelsNames)
-#         np.testing.assert_array_equal(usedIndices, np.arange(10))
-#         np.testing.assert_array_equal(newLabels, cls.fullLabels)
-#
-#
-# class Test_selectAskedLabels(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         cls.random_state = np.random.RandomState(42)
-#         cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"}
-#         cls.fullLabels = cls.random_state.randint(0, 4, 10)
-#         cls.availableLabelsNames = ["test_label_0", "test_label_1",
-#                                     "test_label_2", "test_label_3"]
-#         cls.askedLabelsNames = ["test_label_1", "test_label_3"]
-#
-#     def test_simple(cls):
-#         newLabels, \
-#         newLabelsNames, \
-#         usedIndices = get_multiview_db.select_asked_labels(cls.askedLabelsNamesSet,
-#                                                          cls.availableLabelsNames,
-#                                                          cls.askedLabelsNames,
-#                                                          cls.fullLabels)
-#         cls.assertEqual(["test_label_1", "test_label_3"], newLabelsNames)
-#         np.testing.assert_array_equal(usedIndices, np.array([1, 5, 9]))
-#         np.testing.assert_array_equal(newLabels, np.array([1, 1, 0]))
-#
-#     def test_asked_all_labels(cls):
-#         cls.askedLabelsNamesSet = {"test_label_0", "test_label_1",
-#                                    "test_label_2", "test_label_3"}
-#         cls.askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
-#                                 "test_label_3"]
-#         newLabels, \
-#         newLabelsNames, \
-#         usedIndices = get_multiview_db.select_asked_labels(cls.askedLabelsNamesSet,
-#                                                          cls.availableLabelsNames,
-#                                                          cls.askedLabelsNames,
-#                                                          cls.fullLabels)
-#         cls.assertEqual(cls.availableLabelsNames, newLabelsNames)
-#         np.testing.assert_array_equal(usedIndices, np.arange(10))
-#         np.testing.assert_array_equal(newLabels, cls.fullLabels)
-#
-#     def test_asked_unavailable_labels(cls):
-#         cls.askedLabelsNamesSet = {"test_label_1", "test_label_3",
-#                                    "chicken_is_heaven"}
-#         with cls.assertRaises(get_multiview_db.DatasetError) as catcher:
-#             get_multiview_db.select_asked_labels(cls.askedLabelsNamesSet,
-#                                                cls.availableLabelsNames,
-#                                                cls.askedLabelsNames,
-#                                                cls.fullLabels)
-#         exception = catcher.exception
-#         # cls.assertTrue("Asked labels are not all available in the dataset" in exception)
-#
-#
-# class Test_getAllLabels(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         cls.random_state = np.random.RandomState(42)
-#         cls.fullLabels = cls.random_state.randint(0, 4, 10)
-#         cls.availableLabelsNames = ["test_label_0", "test_label_1",
-#                                     "test_label_2", "test_label_3"]
-#
-#     def test_simple(cls):
-#         newLabels, newLabelsNames, usedIndices = get_multiview_db.get_all_labels(
-#             cls.fullLabels, cls.availableLabelsNames)
-#         cls.assertEqual(cls.availableLabelsNames, newLabelsNames)
-#         np.testing.assert_array_equal(usedIndices, np.arange(10))
-#         np.testing.assert_array_equal(newLabels, cls.fullLabels)
-#
-#
-# class Test_fillLabelNames(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         cls.NB_CLASS = 2
-#         cls.askedLabelsNames = ["test_label_1", "test_label_3"]
-#         cls.random_state = np.random.RandomState(42)
-#         cls.availableLabelsNames = ["test_label_" + str(_) for _ in range(40)]
-#
-#     def test_simple(cls):
-#         askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names(
-#             cls.NB_CLASS,
-#             cls.askedLabelsNames,
-#             cls.random_state,
-#             cls.availableLabelsNames)
-#         cls.assertEqual(askedLabelsNames, cls.askedLabelsNames)
-#         cls.assertEqual(askedLabelsNamesSet, set(cls.askedLabelsNames))
-#
-#     def test_missing_labels_names(cls):
-#         cls.NB_CLASS = 39
-#         askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names(
-#             cls.NB_CLASS,
-#             cls.askedLabelsNames,
-#             cls.random_state,
-#             cls.availableLabelsNames)
-#
-#         cls.assertEqual(askedLabelsNames,
-#                         ['test_label_1', 'test_label_3', 'test_label_35',
-#                          'test_label_38', 'test_label_6', 'test_label_15',
-#                          'test_label_32', 'test_label_28', 'test_label_8',
-#                          'test_label_29', 'test_label_26', 'test_label_17',
-#                          'test_label_19', 'test_label_10', 'test_label_18',
-#                          'test_label_14', 'test_label_21', 'test_label_11',
-#                          'test_label_34', 'test_label_0', 'test_label_27',
-#                          'test_label_7', 'test_label_13', 'test_label_2',
-#                          'test_label_39', 'test_label_23', 'test_label_4',
-#                          'test_label_31', 'test_label_37', 'test_label_5',
-#                          'test_label_36', 'test_label_25', 'test_label_33',
-#                          'test_label_12', 'test_label_24', 'test_label_20',
-#                          'test_label_22', 'test_label_9', 'test_label_16'])
-#         cls.assertEqual(askedLabelsNamesSet, set(
-#             ["test_label_" + str(_) for _ in range(30)] + [
-#                 "test_label_" + str(31 + _) for _ in range(9)]))
-#
-#     def test_too_many_label_names(cls):
-#         cls.NB_CLASS = 2
-#         cls.askedLabelsNames = ["test_label_1", "test_label_3", "test_label_4",
-#                                 "test_label_6"]
-#         askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names(
-#             cls.NB_CLASS,
-#             cls.askedLabelsNames,
-#             cls.random_state,
-#             cls.availableLabelsNames)
-#         cls.assertEqual(askedLabelsNames, ["test_label_3", "test_label_6"])
-#         cls.assertEqual(askedLabelsNamesSet, {"test_label_3", "test_label_6"})
-#
-#
-# class Test_allAskedLabelsAreAvailable(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"}
-#         cls.availableLabelsNames = ["test_label_0", "test_label_1",
-#                                     "test_label_2", "test_label_3"]
-#
-#     def test_asked_available_labels(cls):
-#         cls.assertTrue(
-#             get_multiview_db.all_asked_labels_are_available(cls.askedLabelsNamesSet,
-#                                                         cls.availableLabelsNames))
-#
-#     def test_asked_unavailable_label(cls):
-#         cls.askedLabelsNamesSet = {"test_label_1", "test_label_3",
-#                                    "chicken_is_heaven"}
-#         cls.assertFalse(
-#             get_multiview_db.all_asked_labels_are_available(cls.askedLabelsNamesSet,
-#                                                         cls.availableLabelsNames))
-#
-#
-# class Test_getClasses(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         cls.random_state = np.random.RandomState(42)
-#
-#     def test_multiclass(cls):
-#         labelsSet = get_multiview_db.get_classes(
-#             cls.random_state.randint(0, 5, 30))
-#         cls.assertEqual(labelsSet, {0, 1, 2, 3, 4})
-#
-#     def test_biclass(cls):
-#         labelsSet = get_multiview_db.get_classes(
-#             cls.random_state.randint(0, 2, 30))
-#         cls.assertEqual(labelsSet, {0, 1})
-#
-#     def test_one_class(cls):
-#         with cls.assertRaises(get_multiview_db.DatasetError) as catcher:
-#             get_multiview_db.get_classes(np.zeros(30, dtype=int))
-#         exception = catcher.exception
-#         # cls.assertTrue("Dataset must have at least two different labels" in exception)
-#
-# <<<<<<< HEAD
-# class Test_filterLabels(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         cls.random_state = np.random.RandomState(42)
-#         cls.labelsSet = set(range(4))
-#         cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"}
-#         cls.fullLabels = cls.random_state.randint(0, 4, 10)
-#         cls.availableLabelsNames = ["test_label_0", "test_label_1",
-#                                     "test_label_2", "test_label_3"]
-#         cls.askedLabelsNames = ["test_label_1", "test_label_3"]
-#
-#     def test_simple(self):
-#         newLabels, \
-#         newLabelsNames, \
-#         usedIndices = get_multiview_db.filter_labels(self.labelsSet,
-#                                                     self.askedLabelsNamesSet,
-#                                                     self.fullLabels,
-#                                                     self.availableLabelsNames,
-#                                                     self.askedLabelsNames)
-#         self.assertEqual(["test_label_1", "test_label_3"], newLabelsNames)
-#         np.testing.assert_array_equal(usedIndices, np.array([1, 5, 9]))
-#         np.testing.assert_array_equal(newLabels, np.array([1, 1, 0]))
-#
-#     def test_biclasse(self):
-#         self.labelsSet = {0, 1}
-#         self.fullLabels = self.random_state.randint(0, 2, 10)
-#         self.availableLabelsNames = ["test_label_0", "test_label_1"]
-#         newLabels, \
-#         newLabelsNames, \
-#         usedIndices = get_multiview_db.filter_labels(self.labelsSet,
-#                                                      self.askedLabelsNamesSet,
-#                                                      self.fullLabels,
-#                                                      self.availableLabelsNames,
-#                                                      self.askedLabelsNames)
-#         self.assertEqual(self.availableLabelsNames, newLabelsNames)
-#         np.testing.assert_array_equal(usedIndices, np.arange(10))
-#         np.testing.assert_array_equal(newLabels, self.fullLabels)
-#
-#     def test_asked_too_many_labels(self):
-#         self.askedLabelsNamesSet = {"test_label_0", "test_label_1",
-#                                    "test_label_2", "test_label_3",
-#                                    "chicken_is_heaven"}
-#         with self.assertRaises(get_multiview_db.DatasetError) as catcher:
-#             get_multiview_db.filter_labels(self.labelsSet,
-#                                           self.askedLabelsNamesSet,
-#                                           self.fullLabels,
-#                                           self.availableLabelsNames,
-#                                           self.askedLabelsNames)
-#         exception = catcher.exception
-#
-#     def test_asked_all_labels(self):
-#         self.askedLabelsNamesSet = {"test_label_0", "test_label_1",
-#                                    "test_label_2", "test_label_3"}
-#         self.askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
-#                                 "test_label_3"]
-#         newLabels, \
-#         newLabelsNames, \
-#         usedIndices = get_multiview_db.filter_labels(self.labelsSet,
-#                                                     self.askedLabelsNamesSet,
-#                                                     self.fullLabels,
-#                                                     self.availableLabelsNames,
-#                                                     self.askedLabelsNames)
-#         self.assertEqual(self.availableLabelsNames, newLabelsNames)
-#         np.testing.assert_array_equal(usedIndices, np.arange(10))
-#         np.testing.assert_array_equal(newLabels, self.fullLabels)
-#
-#
-# class Test_selectAskedLabels(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         cls.random_state = np.random.RandomState(42)
-#         cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"}
-#         cls.fullLabels = cls.random_state.randint(0, 4, 10)
-#         cls.availableLabelsNames = ["test_label_0", "test_label_1",
-#                                     "test_label_2", "test_label_3"]
-#         cls.askedLabelsNames = ["test_label_1", "test_label_3"]
-#
-#     def test_simple(self):
-#         newLabels, \
-#         newLabelsNames, \
-#         usedIndices = get_multiview_db.select_asked_labels(self.askedLabelsNamesSet,
-#                                                          self.availableLabelsNames,
-#                                                          self.askedLabelsNames,
-#                                                          self.fullLabels)
-#         self.assertEqual(["test_label_1", "test_label_3"], newLabelsNames)
-#         np.testing.assert_array_equal(usedIndices, np.array([1, 5, 9]))
-#         np.testing.assert_array_equal(newLabels, np.array([1, 1, 0]))
-#
-#     def test_asked_all_labels(self):
-#         self.askedLabelsNamesSet = {"test_label_0", "test_label_1",
-#                                    "test_label_2", "test_label_3"}
-#         self.askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
-#                                 "test_label_3"]
-#         newLabels, \
-#         newLabelsNames, \
-#         usedIndices = get_multiview_db.select_asked_labels(self.askedLabelsNamesSet,
-#                                                          self.availableLabelsNames,
-#                                                          self.askedLabelsNames,
-#                                                          self.fullLabels)
-#         self.assertEqual(self.availableLabelsNames, newLabelsNames)
-#         np.testing.assert_array_equal(usedIndices, np.arange(10))
-#         np.testing.assert_array_equal(newLabels, self.fullLabels)
-#
-#     def test_asked_unavailable_labels(self):
-#         self.askedLabelsNamesSet = {"test_label_1", "test_label_3",
-#                                    "chicken_is_heaven"}
-#         with self.assertRaises(get_multiview_db.DatasetError) as catcher:
-#             get_multiview_db.select_asked_labels(self.askedLabelsNamesSet,
-#                                                self.availableLabelsNames,
-#                                                self.askedLabelsNames,
-#                                                self.fullLabels)
-#         exception = catcher.exception
-#         # self.assertTrue("Asked labels are not all available in the dataset" in exception)
-#
-#
-# class Test_getAllLabels(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         cls.random_state = np.random.RandomState(42)
-#         cls.fullLabels = cls.random_state.randint(0, 4, 10)
-#         cls.availableLabelsNames = ["test_label_0", "test_label_1",
-#                                     "test_label_2", "test_label_3"]
-#
-#     def test_simple(self):
-#         newLabels, newLabelsNames, usedIndices = get_multiview_db.get_all_labels(
-#             self.fullLabels, self.availableLabelsNames)
-#         self.assertEqual(self.availableLabelsNames, newLabelsNames)
-#         np.testing.assert_array_equal(usedIndices, np.arange(10))
-#         np.testing.assert_array_equal(newLabels, self.fullLabels)
-#
-#
-# class Test_fillLabelNames(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         cls.NB_CLASS = 2
-#         cls.askedLabelsNames = ["test_label_1", "test_label_3"]
-#         cls.random_state = np.random.RandomState(42)
-#         cls.availableLabelsNames = ["test_label_" + str(_) for _ in range(40)]
-#
-#     def test_simple(self):
-#         askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names(
-#             self.NB_CLASS,
-#             self.askedLabelsNames,
-#             self.random_state,
-#             self.availableLabelsNames)
-#         self.assertEqual(askedLabelsNames, self.askedLabelsNames)
-#         self.assertEqual(askedLabelsNamesSet, set(self.askedLabelsNames))
-#
-#     def test_missing_labels_names(self):
-#         self.NB_CLASS = 39
-#         askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names(
-#             self.NB_CLASS,
-#             self.askedLabelsNames,
-#             self.random_state,
-#             self.availableLabelsNames)
-#
-#         self.assertEqual(askedLabelsNames,
-#                         ['test_label_1', 'test_label_3', 'test_label_35',
-#                          'test_label_38', 'test_label_6', 'test_label_15',
-#                          'test_label_32', 'test_label_28', 'test_label_8',
-#                          'test_label_29', 'test_label_26', 'test_label_17',
-#                          'test_label_19', 'test_label_10', 'test_label_18',
-#                          'test_label_14', 'test_label_21', 'test_label_11',
-#                          'test_label_34', 'test_label_0', 'test_label_27',
-#                          'test_label_7', 'test_label_13', 'test_label_2',
-#                          'test_label_39', 'test_label_23', 'test_label_4',
-#                          'test_label_31', 'test_label_37', 'test_label_5',
-#                          'test_label_36', 'test_label_25', 'test_label_33',
-#                          'test_label_12', 'test_label_24', 'test_label_20',
-#                          'test_label_22', 'test_label_9', 'test_label_16'])
-#         self.assertEqual(askedLabelsNamesSet, set(
-#             ["test_label_" + str(_) for _ in range(30)] + [
-#                 "test_label_" + str(31 + _) for _ in range(9)]))
-#
-#     def test_too_many_label_names(self):
-#         self.NB_CLASS = 2
-#         self.askedLabelsNames = ["test_label_1", "test_label_3", "test_label_4",
-#                                 "test_label_6"]
-#         askedLabelsNames, askedLabelsNamesSet = get_multiview_db.fill_label_names(
-#             self.NB_CLASS,
-#             self.askedLabelsNames,
-#             self.random_state,
-#             self.availableLabelsNames)
-#         self.assertEqual(askedLabelsNames, ["test_label_3", "test_label_6"])
-#         self.assertEqual(askedLabelsNamesSet, {"test_label_3", "test_label_6"})
-#
-#
-# class Test_allAskedLabelsAreAvailable(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         cls.askedLabelsNamesSet = {"test_label_1", "test_label_3"}
-#         cls.availableLabelsNames = ["test_label_0", "test_label_1",
-#                                     "test_label_2", "test_label_3"]
-#
-#     def test_asked_available_labels(self):
-#         self.assertTrue(
-#             get_multiview_db.all_asked_labels_are_available(self.askedLabelsNamesSet,
-#                                                         self.availableLabelsNames))
-#
-#     def test_asked_unavailable_label(self):
-#         self.askedLabelsNamesSet = {"test_label_1", "test_label_3",
-#                                    "chicken_is_heaven"}
-#         self.assertFalse(
-#             get_multiview_db.all_asked_labels_are_available(self.askedLabelsNamesSet,
-#                                                         self.availableLabelsNames))
-#
-#
-# class Test_getClasses(unittest.TestCase):
-#
-#     @classmethod
-#     def setUpClass(cls):
-#         cls.random_state = np.random.RandomState(42)
-#
-#     def test_multiclass(self):
-#         labelsSet = get_multiview_db.get_classes(
-#             self.random_state.randint(0, 5, 30))
-#         self.assertEqual(labelsSet, {0, 1, 2, 3, 4})
-#
-#     def test_biclass(self):
-#         labelsSet = get_multiview_db.get_classes(
-#             self.random_state.randint(0, 2, 30))
-#         self.assertEqual(labelsSet, {0, 1})
-#
-#     def test_one_class(self):
-#         with self.assertRaises(get_multiview_db.DatasetError) as catcher:
-#             get_multiview_db.get_classes(np.zeros(30, dtype=int))
-#         exception = catcher.exception
-#         # self.assertTrue("Dataset must have at least two different labels" in exception)
-#
-# =======
-# >>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd
 
 class Test_get_classic_db_hdf5(unittest.TestCase):
 
     def setUp(self):
         rm_tmp()
-# <<<<<<< HEAD
-#         if not os.path.exists("multiview_platform/tests/tmp_tests"):
-#             os.mkdir("multiview_platform/tests/tmp_tests")
-#         cls.dataset_file = h5py.File(
-#             tmp_path+"test_dataset.hdf5", "w")
-#         cls.pathF = tmp_path
-#         cls.nameDB = "test_dataset"
-#         cls.NB_CLASS = 2
-#         cls.askedLabelsNames = ["test_label_1", "test_label_3"]
-#         cls.random_state = np.random.RandomState(42)
-#         cls.views = ["test_view_1", "test_view_3"]
-#         cls.metadata_group = cls.dataset_file.create_group("Metadata")
-#         cls.metadata_group.attrs["nbView"] = 4
-#         cls.labels_dataset = cls.dataset_file.create_dataset("Labels",
-#                                                              data=cls.random_state.randint(
-#                                                                  0, 4, 10))
-#         cls.labels_dataset.attrs["names"] = ["test_label_0".encode(),
-#                                              "test_label_1".encode(),
-#                                              "test_label_2".encode(),
-#                                              "test_label_3".encode()]
-#
-#         for i in range(4):
-#             cls.dataset = cls.dataset_file.create_dataset("View" + str(i),
-#                                                           data=cls.random_state.randint(
-#                                                               0, 100, (10, 20)))
-#             cls.dataset.attrs["name"] = "test_view_" + str(i)
-#
-#     def test_simple(self):
-#         dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(
-#             self.views, self.pathF, self.nameDB,
-#             self.NB_CLASS, self.askedLabelsNames,
-#             self.random_state)
-#         self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3")
-#         self.assertEqual(labels_dictionary,
-#                         {0: "test_label_1", 1: "test_label_3"})
-#         self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3)
-#         self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2)
-#         self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2)
-#         np.testing.assert_array_equal(dataset_file.get("View0").value,
-#                                       self.dataset_file.get("View1").value[
-#                                       np.array([1, 5, 9]), :])
-#
-#     def test_all_labels_asked(self):
-#         askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
-#                             "test_label_3"]
-#         NB_CLASS = 4
-#         dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(
-#             self.views, self.pathF, self.nameDB,
-#             NB_CLASS, askedLabelsNames,
-#             self.random_state)
-#         self.assertEqual(dataset_name, 'test_dataset_temp_view_label_select')
-#         self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3")
-#         self.assertEqual(labels_dictionary,
-#                         {0: "test_label_0", 1: "test_label_1",
-#                          2: "test_label_2", 3: "test_label_3"})
-#         self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10)
-#         self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2)
-#         self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4)
-#         np.testing.assert_array_equal(dataset_file.get("View0").value,
-#                                       self.dataset_file.get("View1").value)
-#
-#     def test_all_views_asked(self):
-#         views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"]
-#         dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(views,
-#                                                                                           self.pathF,
-#                                                                                           self.nameDB,
-#                                                                                           self.NB_CLASS,
-#                                                                                           self.askedLabelsNames,
-#                                                                                           self.random_state)
-#         for viewIndex in range(4):
-#             np.testing.assert_array_equal(
-#                 dataset_file.get("View" + str(viewIndex)).value,
-#                 self.dataset_file.get("View" + str(viewIndex)).value[
-#                 np.array([1, 5, 9]), :])
-#             self.assertEqual(
-#                 dataset_file.get("View" + str(viewIndex)).attrs["name"],
-#                 "test_view_" + str(viewIndex))
-#         self.assertEqual(labels_dictionary,
-#                         {0: "test_label_1", 1: "test_label_3"})
-#         self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3)
-#         self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4)
-#         self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2)
-#
-#     def test_asked_the_whole_dataset(self):
-#         askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
-#                             "test_label_3"]
-#         NB_CLASS = 4
-#         views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"]
-#         dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(views,
-#                                                                                           self.pathF,
-#                                                                                           self.nameDB,
-#                                                                                           NB_CLASS,
-#                                                                                           askedLabelsNames,
-#                                                                                           self.random_state)
-#         for viewIndex in range(4):
-#             np.testing.assert_array_equal(
-#                 dataset_file.get("View" + str(viewIndex)).value,
-#                 self.dataset_file.get("View" + str(viewIndex)))
-#             self.assertEqual(
-#                 dataset_file.get("View" + str(viewIndex)).attrs["name"],
-#                 "test_view_" + str(viewIndex))
-#         self.assertEqual(labels_dictionary,
-#                         {0: "test_label_0", 1: "test_label_1",
-#                          2: "test_label_2", 3: "test_label_3"})
-#         self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10)
-#         self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4)
-#         self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4)
-# =======
         os.mkdir(tmp_path)
         self.rs = np.random.RandomState(42)
         self.nb_view = 3
@@ -810,7 +42,6 @@ class Test_get_classic_db_hdf5(unittest.TestCase):
         meta_data_grp.attrs["nbView"] = len(self.views)
         meta_data_grp.attrs["nbClass"] = len(np.unique(self.labels))
         meta_data_grp.attrs["datasetLength"] = len(self.labels)
-# >>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd
 
     def test_simple(self):
         dataset , labels_dictionary, dataset_name = get_multiview_db.get_classic_db_hdf5(
@@ -868,89 +99,7 @@ class Test_get_classic_db_csv(unittest.TestCase):
                        data, delimiter=",")
             self.datas.append(data)
 
-# <<<<<<< HEAD
-#     def test_simple(self):
-#         dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(
-#             self.views, self.pathF, self.nameDB,
-#             self.NB_CLASS, self.askedLabelsNames,
-#             self.random_state, delimiter=",")
-#         self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2)
-#         self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3")
-#         self.assertEqual(dataset_file.get("View0").attrs["name"], "test_view_1")
-#         self.assertEqual(labels_dictionary,
-#                         {0: "test_label_1", 1: "test_label_3"})
-#         self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3)
-#         self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2)
-#         np.testing.assert_array_equal(dataset_file.get("View0").value,
-#                                       self.datas[1][np.array([1, 5, 9]), :])
-#
-#     def test_all_views_asked(self):
-#         views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"]
-#         dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(views,
-#                                                                                          self.pathF,
-#                                                                                          self.nameDB,
-#                                                                                          self.NB_CLASS,
-#                                                                                          self.askedLabelsNames,
-#                                                                                          self.random_state,
-#                                                                                          delimiter=",")
-#         self.assertEqual(labels_dictionary,
-#                         {0: "test_label_1", 1: "test_label_3"})
-#         self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 3)
-#         self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4)
-#         self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 2)
-#         self.assertEqual(dataset_name,'test_dataset_temp_view_label_select')
-#         for viewIndex in range(4):
-#             np.testing.assert_array_equal(
-#                 dataset_file.get("View" + str(viewIndex)).value,
-#                 self.datas[viewIndex][np.array([1, 5, 9]), :])
-#             self.assertEqual(
-#                 dataset_file.get("View" + str(viewIndex)).attrs["name"],
-#                 "test_view_" + str(viewIndex))
-#
-#     def test_all_labels_asked(self):
-#         askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
-#                             "test_label_3"]
-#         NB_CLASS = 4
-#         dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(
-#             self.views, self.pathF, self.nameDB,
-#             NB_CLASS, askedLabelsNames,
-#             self.random_state, delimiter=",")
-#         self.assertEqual(dataset_file.get("View1").attrs["name"], "test_view_3")
-#         self.assertEqual(labels_dictionary,
-#                         {0: "test_label_0", 1: "test_label_1",
-#                          2: "test_label_2", 3: "test_label_3"})
-#         self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10)
-#         self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 2)
-#         self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4)
-#         np.testing.assert_array_equal(dataset_file.get("View0").value,
-#                                       self.datas[1])
-#
-#     def test_asked_the_whole_dataset(self):
-#         askedLabelsNames = ["test_label_0", "test_label_1", "test_label_2",
-#                             "test_label_3"]
-#         NB_CLASS = 4
-#         views = ["test_view_0", "test_view_1", "test_view_2", "test_view_3"]
-#         dataset_file, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(views,
-#                                                                                          self.pathF,
-#                                                                                          self.nameDB,
-#                                                                                          NB_CLASS,
-#                                                                                          askedLabelsNames,
-#                                                                                          self.random_state,
-#                                                                                          delimiter=",")
-#         for viewIndex in range(4):
-#             np.testing.assert_array_equal(
-#                 dataset_file.get("View" + str(viewIndex)).value,
-#                 self.datas[viewIndex])
-#             self.assertEqual(
-#                 dataset_file.get("View" + str(viewIndex)).attrs["name"],
-#                 "test_view_" + str(viewIndex))
-#         self.assertEqual(labels_dictionary,
-#                         {0: "test_label_0", 1: "test_label_1",
-#                          2: "test_label_2", 3: "test_label_3"})
-#         self.assertEqual(dataset_file.get("Metadata").attrs["datasetLength"], 10)
-#         self.assertEqual(dataset_file.get("Metadata").attrs["nbView"], 4)
-#         self.assertEqual(dataset_file.get("Metadata").attrs["nbClass"], 4)
-# =======
+
     def test_simple(self):
         dataset, labels_dictionary, dataset_name = get_multiview_db.get_classic_db_csv(
             self.views, self.pathF, self.nameDB,
@@ -963,7 +112,6 @@ class Test_get_classic_db_csv(unittest.TestCase):
         self.assertEqual(dataset.get_nb_examples(), 3)
         self.assertEqual(dataset.get_nb_class(), 2)
 
-# >>>>>>> 66129965ae7c38b4bdb4ae657369ab24357070cd
 
     @classmethod
     def tearDown(self):
-- 
GitLab