diff --git a/Code/ExecClassif.py b/Code/ExecClassif.py index 64b6dde4c6466cabfdc7c486cbbabbed3df1c388..dab41d2a8884f06ad89ef53c16c7501cbdb145fa 100644 --- a/Code/ExecClassif.py +++ b/Code/ExecClassif.py @@ -3,6 +3,7 @@ import pkgutil import Multiview from Multiview.ExecMultiview import ExecMultiview from Monoview.ExecClassifMonoView import ExecMonoview +import Multiview.GetMultiviewDb as DB import Monoview import os import time @@ -130,6 +131,14 @@ logging.basicConfig(format='%(asctime)s %(levelname)s: %(message)s', filename=lo if args.log: logging.getLogger().addHandler(logging.StreamHandler()) +getDatabase = getattr(DB, "get" + args.name + "DB" + args.type[1:]) +DATASET, LABELS_DICTIONARY = getDatabase(args.views, args.pathF, args.name, len(args.CL_classes), args.CL_classes) +datasetLength = DATASET.get("Metadata").attrs["datasetLength"] +NB_VIEW = DATASET.get("Metadata").attrs["nbView"] +views = [str(DATASET.get("View"+str(viewIndex)).attrs["name"]) for viewIndex in range(NB_VIEW)] +NB_CLASS = DATASET.get("Metadata").attrs["nbClass"] + + logging.info("Begginging") benchmark = {} if args.CL_type.split(":")==["Benchmark"]: @@ -184,28 +193,30 @@ KNNKWARGS = {"classifier__n_neighbors": map(float,args.CL_KNN_neigh.split(":"))} argumentDictionaries = {"Monoview":{}, "Multiview":[]} -if benchmark["Monoview"]: - for view in args.views.split(":"): - argumentDictionaries["Monoview"][str(view)] = [] - for classifier in benchmark["Monoview"]: - arguments = {classifier+"KWARGS": globals()[classifier+"KWARGS"], "feat":view, "fileFeat": args.fileFeat, - "fileCL": args.fileCL, "fileCLD": args.fileCLD, "CL_type": classifier, - classifier+"KWARGS": globals()[classifier+"KWARGS"]} - argumentDictionaries["Monoview"][str(view)].append(arguments) - -bestClassifiers = [] -bestClassifiersConfigs = [] -for viewArguments in argumentDictionaries["Monoview"].values(): - resultsMonoview = Parallel(n_jobs=nbCores)( - delayed(ExecMonoview)(args.name, args.CL_split, args.CL_nbFolds, 1, args.type, args.pathF, gridSearch=True, - **arguments) - for arguments in viewArguments) - accuracies = [result[1] for result in resultsMonoview] - classifiersNames = [result[0] for result in resultsMonoview] - classifiersConfigs = [result[2] for result in resultsMonoview] - bestClassifiers.append(classifiersNames[np.argmax(np.array(accuracies))]) - bestClassifiersConfigs.append(classifiersConfigs[np.argmax(np.array(accuracies))]) - +# if benchmark["Monoview"]: +# for view in args.views.split(":"): +# argumentDictionaries["Monoview"][str(view)] = [] +# for classifier in benchmark["Monoview"]: +# arguments = {classifier+"KWARGS": globals()[classifier+"KWARGS"], "feat":view, "fileFeat": args.fileFeat, +# "fileCL": args.fileCL, "fileCLD": args.fileCLD, "CL_type": classifier, +# classifier+"KWARGS": globals()[classifier+"KWARGS"]} +# argumentDictionaries["Monoview"][str(view)].append(arguments) +# +# bestClassifiers = [] +# bestClassifiersConfigs = [] +# for viewIndex, viewArguments in enumerate(argumentDictionaries["Monoview"].values()): +# resultsMonoview = Parallel(n_jobs=nbCores)( +# delayed(ExecMonoview)(DATASET.get("View"+str(viewIndex)).value, DATASET.get("labels").value, args.name, +# args.CL_split, args.CL_nbFolds, 1, args.type, args.pathF, gridSearch=True, +# **arguments) +# for arguments in viewArguments) +# accuracies = [result[1] for result in resultsMonoview] +# classifiersNames = [result[0] for result in resultsMonoview] +# classifiersConfigs = [result[2] for result in resultsMonoview] +# bestClassifiers.append(classifiersNames[np.argmax(np.array(accuracies))]) +# bestClassifiersConfigs.append(classifiersConfigs[np.argmax(np.array(accuracies))]) +bestClassifiers = ["DecisionTree", "DecisionTree", "DecisionTree", "DecisionTree"] +bestClassifiersConfigs = [["1"],["1"],["1"],["1"]] if benchmark["Multiview"]: if benchmark["Multiview"]["Fusion"]: if benchmark["Multiview"]["Fusion"]["Methods"]["LateFusion"] and benchmark["Multiview"]["Fusion"]["Classifiers"]: @@ -249,8 +260,8 @@ if benchmark["Multiview"]: argumentDictionaries["Multiview"].append(arguments) resultsMultiview = Parallel(n_jobs=nbCores)( - delayed(ExecMultiview)(args.name, args.CL_split, args.CL_nbFolds, 1, args.type, args.pathF, gridSearch=True, - **arguments) + delayed(ExecMultiview)(DATASET, args.name, args.CL_split, args.CL_nbFolds, 1, args.type, args.pathF, + LABELS_DICTIONARY, gridSearch=True, **arguments) for arguments in argumentDictionaries["Multiview"]) # for classifierType, argumentsList in argumentDictionaries.iteritems(): diff --git a/Code/Monoview/ExecClassifMonoView.py b/Code/Monoview/ExecClassifMonoView.py index c7ff0f799c43461df450c66084a97f86a8b306e8..04a271e7ea188ee11d08703307e8e5bc7a401f7c 100644 --- a/Code/Monoview/ExecClassifMonoView.py +++ b/Code/Monoview/ExecClassifMonoView.py @@ -30,7 +30,7 @@ __date__ = 2016-03-25 ### Argument Parser -def ExecMonoview(name, learningRate, nbFolds, nbCores, databaseType, path, gridSearch=True, **kwargs): +def ExecMonoview(X, Y, name, learningRate, nbFolds, nbCores, databaseType, path, gridSearch=True, **kwargs): t_start = time.time() directory = os.path.dirname(os.path.abspath(__file__)) + "/Results-ClassMonoView/" feat = kwargs["feat"] @@ -44,20 +44,6 @@ def ExecMonoview(name, learningRate, nbFolds, nbCores, databaseType, path, gridS logging.debug("### Main Programm for Classification MonoView") logging.debug("### Classification - Database:" + str(name) + " Feature:" + str(feat) + " train_size:" + str(learningRate) + ", CrossValidation k-folds:" + str(nbFolds) + ", cores:" + str(nbCores)+", algorithm : "+CL_type) - # Read the features - logging.debug("Start:\t Read " + databaseType + " Files") - - if databaseType == ".csv": - X = np.genfromtxt(path + fileFeat, delimiter=';') - Y = np.genfromtxt(path + fileCL, delimiter=';') - elif databaseType == ".hdf5": - dataset = h5py.File(path + name + ".hdf5", "r") - viewsDict = dict((dataset.get("/View"+str(viewIndex)+"/name").value, viewIndex) for viewIndex in range(dataset.get("nbView").value)) - X = dataset["View"+str(viewsDict[feat])+"/matrix"][...] - Y = dataset["Labels/labelsArray"][...] - - logging.debug("Info:\t Shape of Feature:" + str(X.shape) + ", Length of classLabels vector:" + str(Y.shape)) - logging.debug("Done:\t Read CSV Files") # Calculate Train/Test data logging.debug("Start:\t Determine Train/Test split") @@ -204,7 +190,23 @@ if __name__=='__main__': if(args.log): logging.getLogger().addHandler(logging.StreamHandler()) + + # Read the features + logging.debug("Start:\t Read " + args.type + " Files") + + if args.databaseType == ".csv": + X = np.genfromtxt(args.pathF + args.fileFeat, delimiter=';') + Y = np.genfromtxt(args.pathF + args.fileCL, delimiter=';') + elif args.type == ".hdf5": + dataset = h5py.File(args.pathF + args.name + ".hdf5", "r") + viewsDict = dict((dataset.get("View"+str(viewIndex)).attrs["name"], viewIndex) for viewIndex in range(dataset.get("Metadata").attrs["nbView"])) + X = dataset["View"+str(viewsDict[args.feat])][...] + Y = dataset["labels"][...] + + logging.debug("Info:\t Shape of Feature:" + str(X.shape) + ", Length of classLabels vector:" + str(Y.shape)) + logging.debug("Done:\t Read CSV Files") + arguments = {"RandomForestKWARGS": RandomForestKWARGS, "SVCKWARGS": SVCKWARGS, "DecisionTreeKWARGS": DecisionTreeKWARGS, "SGDKWARGS": SGDKWARGS, "feat":args.feat, "fileFeat": args.fileFeat, "fileCL": args.fileCL, "fileCLD": args.fileCLD, "CL_type": args.CL_type} - ExecMonoview(args.name, args.CL_split, args.CL_CV, args.CL_Cores, args.type, args.pathF, **arguments) + ExecMonoview(X, Y, args.name, args.CL_split, args.CL_CV, args.CL_Cores, args.type, args.pathF, **arguments) diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-1.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..3131e2bdc54911acefa5e89f3578fa40d98e26d0 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-1.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.478260869565;0.0416666666667;0.328571428571 +Oui;0.239130434783;0.0416666666667;0.171428571429 +All;0.717391304348;0.0833333333333;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-2.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..fb1b91d89d6e5b5c3699b4e7cb2a684e5bffe1f0 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-2.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.5;;0.314285714286 +Oui;0.295454545455;;0.185714285714 +All;0.795454545455;;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-3.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..c37d7e485cc7ddf323cd5b821ca5723a81483d1a --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-3.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.5;;0.342857142857 +Oui;0.229166666667;;0.157142857143 +All;0.729166666667;;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-4.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..34b9ef9be476fab7bc35cf71be85d5779d8ccb5f --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix-4.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.346153846154;0.444444444444;0.371428571429 +Oui;0.0769230769231;0.277777777778;0.128571428571 +All;0.423076923077;0.722222222222;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix.csv new file mode 100644 index 0000000000000000000000000000000000000000..5b1479a8486b209c1c853234efadc4111ccdf8d6 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrix.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.326923076923;0.5;0.371428571429 +Oui;0.115384615385;0.166666666667;0.128571428571 +All;0.442307692308;0.666666666667;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png new file mode 100644 index 0000000000000000000000000000000000000000..ec5e4d4b6499932ee5b4157ef62fb822e5307728 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-1.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png new file mode 100644 index 0000000000000000000000000000000000000000..031281b78bb76d8990add7c3e76379aafb7f6339 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-2.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png new file mode 100644 index 0000000000000000000000000000000000000000..67961b566905b77656562a4a9b3f8dbcda7de94e Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-3.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png new file mode 100644 index 0000000000000000000000000000000000000000..5609e6ce14d5373908ce28b9b588c9927805fc52 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg-4.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg.png new file mode 100644 index 0000000000000000000000000000000000000000..82b334a676c5b38bba9d5555af9a53459c2f95d8 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-ConfMatrixImg.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-1.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..95e361c4614c748dee37c87784c3ea5a77779c44 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-1.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.666666666667;0.95652173913;0.785714285714;23.0 +Oui;0.5;0.0833333333333;0.142857142857;12.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-2.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..f218eca7089c36145f3b6aec95539d28bd7a2bcd --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-2.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.628571428571;1.0;0.771929824561;22.0 +Oui;0.0;0.0;0.0;13.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-3.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..45417716354c392e85f7f1960ac02a701a0b7df6 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-3.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.685714285714;1.0;0.813559322034;24.0 +Oui;0.0;0.0;0.0;11.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-4.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..5e4458236c29426da4fd5451214994565c4cfe2d --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report-4.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.818181818182;0.692307692308;0.75;26.0 +Oui;0.384615384615;0.555555555556;0.454545454545;9.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report.csv new file mode 100644 index 0000000000000000000000000000000000000000..7ae1fa919134aab2f8ae0f8b0edb7c9d7b9283cf --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Report.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.739130434783;0.653846153846;0.69387755102;26.0 +Oui;0.25;0.333333333333;0.285714285714;9.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-1.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-1.png new file mode 100644 index 0000000000000000000000000000000000000000..ee03d0579492b8843c532e1179b55894484998d1 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-1.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-2.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-2.png new file mode 100644 index 0000000000000000000000000000000000000000..23722959a153adee8c0f6e47059aaf1beca02f00 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-2.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-3.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-3.png new file mode 100644 index 0000000000000000000000000000000000000000..61d5c7690d46b99f0bbeb4ab54a8faa6000576be Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-3.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-4.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-4.png new file mode 100644 index 0000000000000000000000000000000000000000..d2b477a5a2273aeddab9c93fb7745d0d62f43450 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score-4.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score.png new file mode 100644 index 0000000000000000000000000000000000000000..196fc87d498172cb775f51e341e9e5e6851caf6f Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Score.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-1.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..5e8d3d23cdeba763f3b4c7499b8389359675dc2f --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-1.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.657142857143 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.4642857142857142 +5;Mean of F1-Score of top 20 classes by F1-Score;0.4642857142857142 +6;Mean of F1-Score of top 30 classes by F1-Score;0.4642857142857142 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-2.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..819494183b9f75326814335457a36af802ab1c93 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-2.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.628571428571 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.5 +4;Mean of F1-Score of top 10 classes by F1-Score;0.38596491228070173 +5;Mean of F1-Score of top 20 classes by F1-Score;0.38596491228070173 +6;Mean of F1-Score of top 30 classes by F1-Score;0.38596491228070173 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-3.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..fb3b57b1ad14692b305fb2473f3d50e46bee21e3 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-3.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.685714285714 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.5 +4;Mean of F1-Score of top 10 classes by F1-Score;0.4067796610169492 +5;Mean of F1-Score of top 20 classes by F1-Score;0.4067796610169492 +6;Mean of F1-Score of top 30 classes by F1-Score;0.4067796610169492 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-4.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..cfc8c4a817bdd3149cf25401b0d66bf0f5c9d639 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats-4.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.657142857143 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.6022727272727273 +5;Mean of F1-Score of top 20 classes by F1-Score;0.6022727272727273 +6;Mean of F1-Score of top 30 classes by F1-Score;0.6022727272727273 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats.csv new file mode 100644 index 0000000000000000000000000000000000000000..313fe8a1ee553538eeef8930ae567e360ff9ff49 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Clinic-Stats.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.571428571429 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.4897959183673469 +5;Mean of F1-Score of top 20 classes by F1-Score;0.4897959183673469 +6;Mean of F1-Score of top 30 classes by F1-Score;0.4897959183673469 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-1.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..1fa13645401c42d5721bd2f473646149dfacfbbe --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-1.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.483333333333;0.1;0.428571428571 +Oui;0.0833333333333;0.0;0.0714285714286 +All;0.566666666667;0.1;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-2.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..5a3f315d5d5c894a39428bce1e45c0424d12a1cf --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-2.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.5;0.0;0.371428571429 +Oui;0.0576923076923;0.333333333333;0.128571428571 +All;0.557692307692;0.333333333333;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-3.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..a1ebf0595614fb1080995c8b426071a80d4817ce --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-3.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.5;;0.385714285714 +Oui;0.148148148148;;0.114285714286 +All;0.648148148148;;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-4.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..fafad4465902c0b1accc078589cb489013e13ad7 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix-4.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.5;0.0;0.285714285714 +Oui;0.2;0.233333333333;0.214285714286 +All;0.7;0.233333333333;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix.csv new file mode 100644 index 0000000000000000000000000000000000000000..fb1b91d89d6e5b5c3699b4e7cb2a684e5bffe1f0 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrix.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.5;;0.314285714286 +Oui;0.295454545455;;0.185714285714 +All;0.795454545455;;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png new file mode 100644 index 0000000000000000000000000000000000000000..8d44b47b36155a9b45745589d65d723a8ee47ae7 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-1.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png new file mode 100644 index 0000000000000000000000000000000000000000..7388250a899117e8c685224d49b0614c7cae1e8c Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-2.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png new file mode 100644 index 0000000000000000000000000000000000000000..0cd8b91c5f3c636e468fcad9ad7dd6738ab90983 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-3.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png new file mode 100644 index 0000000000000000000000000000000000000000..0ff94a0190b58edf7a38f83f6b5c9948af136bb5 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg-4.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg.png new file mode 100644 index 0000000000000000000000000000000000000000..031281b78bb76d8990add7c3e76379aafb7f6339 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-ConfMatrixImg.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-1.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..8a160c6b94c4dc1dffb92f44b5f3ae4b448e6cbc --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-1.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.852941176471;0.966666666667;0.90625;30.0 +Oui;0.0;0.0;0.0;5.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-2.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..883dde245783b9903be30b8acb1f5dfb74a075de --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-2.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.896551724138;1.0;0.945454545455;26.0 +Oui;1.0;0.666666666667;0.8;9.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-3.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..24b0ae770f55783c9f6a7077dcf9d9bf637f402b --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-3.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.771428571429;1.0;0.870967741935;27.0 +Oui;0.0;0.0;0.0;8.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-4.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..2bb3846aba71e518daad010efa7e6c2b31f899e1 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report-4.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.714285714286;1.0;0.833333333333;20.0 +Oui;1.0;0.466666666667;0.636363636364;15.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report.csv new file mode 100644 index 0000000000000000000000000000000000000000..f218eca7089c36145f3b6aec95539d28bd7a2bcd --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Report.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.628571428571;1.0;0.771929824561;22.0 +Oui;0.0;0.0;0.0;13.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-1.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-1.png new file mode 100644 index 0000000000000000000000000000000000000000..a117238945ab2f519e5532a484e5d5b487dcec25 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-1.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-2.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-2.png new file mode 100644 index 0000000000000000000000000000000000000000..3fdb5c9c6e5bc232d06201ff6062caedc7417bbc Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-2.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-3.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-3.png new file mode 100644 index 0000000000000000000000000000000000000000..51bed9516aede380626b14b301f91d598d12e170 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-3.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-4.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-4.png new file mode 100644 index 0000000000000000000000000000000000000000..561f8d59edbb7b62daef635795d86b1fdb6704a5 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score-4.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score.png new file mode 100644 index 0000000000000000000000000000000000000000..be7eb045cacddd65fcc1c567f91467661beb1cfa Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Score.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-1.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..60369ed171b55f177c773b946e3e173be6f38f1b --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-1.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.828571428571 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.5 +4;Mean of F1-Score of top 10 classes by F1-Score;0.453125 +5;Mean of F1-Score of top 20 classes by F1-Score;0.453125 +6;Mean of F1-Score of top 30 classes by F1-Score;0.453125 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-2.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..bb4e312c3ae16c8c73b35eee27293b3144ff4d63 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-2.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.914285714286 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8727272727272728 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8727272727272728 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8727272727272728 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-3.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..69922632bbd248d18b1b00a3ab99d7757879e62a --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-3.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.771428571429 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.5 +4;Mean of F1-Score of top 10 classes by F1-Score;0.435483870967742 +5;Mean of F1-Score of top 20 classes by F1-Score;0.435483870967742 +6;Mean of F1-Score of top 30 classes by F1-Score;0.435483870967742 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-4.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..a73beda40854ac8b1487704df6af7012ab527484 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats-4.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.771428571429 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7348484848484849 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7348484848484849 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7348484848484849 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats.csv new file mode 100644 index 0000000000000000000000000000000000000000..819494183b9f75326814335457a36af802ab1c93 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-Methyl-Stats.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.628571428571 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.5 +4;Mean of F1-Score of top 10 classes by F1-Score;0.38596491228070173 +5;Mean of F1-Score of top 20 classes by F1-Score;0.38596491228070173 +6;Mean of F1-Score of top 30 classes by F1-Score;0.38596491228070173 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..55ae5b075404ea9415d3ee31186eec1024e9c18c --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-1.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.462962962963;0.125;0.385714285714 +Oui;0.0555555555556;0.3125;0.114285714286 +All;0.518518518519;0.4375;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..8b48b232b4edf96f91ca89a452fc69725fe9004b --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-2.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.462962962963;0.125;0.385714285714 +Oui;0.037037037037;0.375;0.114285714286 +All;0.5;0.5;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..77d08124ff8696706ef8e1f5a4d799b1e78e6012 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-3.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.425925925926;0.25;0.385714285714 +Oui;0.037037037037;0.375;0.114285714286 +All;0.462962962963;0.625;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..5861a0b8ddafe692ff9e9310595ce8c88c3032fd --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-4.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.433333333333;0.4;0.428571428571 +Oui;0.0166666666667;0.4;0.0714285714286 +All;0.45;0.8;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv new file mode 100644 index 0000000000000000000000000000000000000000..30324a47eddf71aecdaadeea88ea16ebb1539df9 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix-5.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.423076923077;0.222222222222;0.371428571429 +Oui;0.0;0.5;0.128571428571 +All;0.423076923077;0.722222222222;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix.csv new file mode 100644 index 0000000000000000000000000000000000000000..c82f4365784987e6612329b77cb06ade74fd3d71 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrix.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.4;0.25;0.357142857143 +Oui;0.0;0.5;0.142857142857 +All;0.4;0.75;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png new file mode 100644 index 0000000000000000000000000000000000000000..5bf9c64e6b691ebda8931a8588523974d8883de8 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-1.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png new file mode 100644 index 0000000000000000000000000000000000000000..d70b36c4d02d312eb0c6dc639ea80f94720b8db2 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-2.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png new file mode 100644 index 0000000000000000000000000000000000000000..656929acbef30daa5b6eccd445aaa0077a2b8391 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-3.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png new file mode 100644 index 0000000000000000000000000000000000000000..84ba8acf427346e119106301e9a8507985b17158 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-4.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png new file mode 100644 index 0000000000000000000000000000000000000000..fc6ba4822022908f96ef5cc42fe07e3f3a98d7fa Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg-5.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png new file mode 100644 index 0000000000000000000000000000000000000000..8b3960d150cb70efa135eacb0ca3c10d48f34b05 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-ConfMatrixImg.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-1.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..2a5a7fca057d3424082cb8c3f29086f4b49fbf11 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-1.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.892857142857;0.925925925926;0.909090909091;27.0 +Oui;0.714285714286;0.625;0.666666666667;8.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-2.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..e3450ed32efef539cded9555e1e6188cf01d1973 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-2.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.925925925926;0.925925925926;0.925925925926;27.0 +Oui;0.75;0.75;0.75;8.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-3.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..5ecc852b1765ef333b4094a5de3dd08f0110f7ea --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-3.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.92;0.851851851852;0.884615384615;27.0 +Oui;0.6;0.75;0.666666666667;8.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-4.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..15c161efa4d1d54235c324f79a849669b158bdd3 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-4.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.962962962963;0.866666666667;0.912280701754;30.0 +Oui;0.5;0.8;0.615384615385;5.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-5.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-5.csv new file mode 100644 index 0000000000000000000000000000000000000000..18d51959f0dfb23b4c0a0270fce8c1d93d21f5dc --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report-5.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;1.0;0.846153846154;0.916666666667;26.0 +Oui;0.692307692308;1.0;0.818181818182;9.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report.csv new file mode 100644 index 0000000000000000000000000000000000000000..5e41a6d7badd201d92a4ed09f5b4e01b6ee78daa --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Report.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;1.0;0.8;0.888888888889;25.0 +Oui;0.666666666667;1.0;0.8;10.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-1.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-1.png new file mode 100644 index 0000000000000000000000000000000000000000..8c70434113c24ee980c51ecd8fcf8a6e7670d353 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-1.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-2.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-2.png new file mode 100644 index 0000000000000000000000000000000000000000..bc5a5f2c0b9b9cb37062a5277012fb1bf992b1fa Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-2.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-3.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-3.png new file mode 100644 index 0000000000000000000000000000000000000000..4699e6066bacb2cc05fec1acacf969d2f082f026 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-3.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-4.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-4.png new file mode 100644 index 0000000000000000000000000000000000000000..b8d5bd6f1b1057a687e49f7bf339c6e1258ec5e6 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-4.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-5.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-5.png new file mode 100644 index 0000000000000000000000000000000000000000..bb6d04085d17c1015dc7e663747f7448f1eacbfd Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score-5.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score.png new file mode 100644 index 0000000000000000000000000000000000000000..100a6d97593793ab9dae74532959ebfc2934474d Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Score.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-1.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..133d2853fe84235749540a3b5fd5fe79544ca6e3 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-1.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.857142857143 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7878787878787878 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7878787878787878 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7878787878787878 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-2.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..d244a3d6a39cc1272d3f854e531547fc8423e8ca --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-2.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.885714285714 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.837962962962963 +5;Mean of F1-Score of top 20 classes by F1-Score;0.837962962962963 +6;Mean of F1-Score of top 30 classes by F1-Score;0.837962962962963 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-3.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..e0555824ca01d3107bb9fe860c222a925c504c54 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-3.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.828571428571 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7756410256410255 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7756410256410255 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7756410256410255 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-4.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..b5cccc7b0a0a3b64b4187eee04b1d75f444dcf16 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-4.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.857142857143 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7638326585695008 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7638326585695008 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7638326585695008 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-5.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-5.csv new file mode 100644 index 0000000000000000000000000000000000000000..be7df7ca3ba374ddf4200288040d20b9096b8a42 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats-5.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.885714285714 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8674242424242424 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8674242424242424 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8674242424242424 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats.csv new file mode 100644 index 0000000000000000000000000000000000000000..bf63027079c9e6ed9c224c804ba841815a777019 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-MiRNA_-Stats.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.857142857143 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8444444444444446 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8444444444444446 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8444444444444446 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..ea73b222cdd2fd655afe4142538273d25dc21c07 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-1.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.464285714286;0.142857142857;0.4 +Oui;0.0892857142857;0.142857142857;0.1 +All;0.553571428571;0.285714285714;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..95c8b693a6b9d8a4455592b40c8abad202971f80 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-2.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.458333333333;0.0909090909091;0.342857142857 +Oui;0.0416666666667;0.409090909091;0.157142857143 +All;0.5;0.5;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..b4e876287ff165f5f2669843b066a5383a4222e3 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-3.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.42;0.2;0.357142857143 +Oui;0.06;0.35;0.142857142857 +All;0.48;0.55;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..4fd07f738f5ab4fc126ee94a0b087d2a9e8b39f1 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix-4.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.444444444444;0.1875;0.385714285714 +Oui;0.037037037037;0.375;0.114285714286 +All;0.481481481481;0.5625;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix.csv new file mode 100644 index 0000000000000000000000000000000000000000..280e444a3389ee75ceead55f93b560b130103877 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrix.csv @@ -0,0 +1,4 @@ +;Non;Oui;All +Non;0.442307692308;0.166666666667;0.371428571429 +Oui;0.0576923076923;0.333333333333;0.128571428571 +All;0.5;0.5;0.5 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png new file mode 100644 index 0000000000000000000000000000000000000000..5329bd6f873bc8e543edc3a244eb79118cedb5b2 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-1.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png new file mode 100644 index 0000000000000000000000000000000000000000..477b52e2f0575270a72db09a4bcdf0e488f5cf0e Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-2.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png new file mode 100644 index 0000000000000000000000000000000000000000..115004bfaa4c758cd6c3873bface46e3fa820884 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-3.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png new file mode 100644 index 0000000000000000000000000000000000000000..8a17beb1f3ffde99013ca0491c2fff654e7b0885 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg-4.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg.png new file mode 100644 index 0000000000000000000000000000000000000000..8791e7f0f38bfb8b6e108307aa0f7e9191b9d386 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-ConfMatrixImg.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-1.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..010d9917f3841e9d0f2b357225619630cb45c5ab --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-1.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.838709677419;0.928571428571;0.881355932203;28.0 +Oui;0.5;0.285714285714;0.363636363636;7.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-2.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..907547b5cb8dd4fe685a9ecfeedf55eb7a4adf51 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-2.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.916666666667;0.916666666667;0.916666666667;24.0 +Oui;0.818181818182;0.818181818182;0.818181818182;11.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-3.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..cfd175bbbe327ca6c950e968b0f85a3703c6c970 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-3.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.875;0.84;0.857142857143;25.0 +Oui;0.636363636364;0.7;0.666666666667;10.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-4.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..80dbc4174377b709e64f312c622965fe8581ef0d --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report-4.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.923076923077;0.888888888889;0.905660377358;27.0 +Oui;0.666666666667;0.75;0.705882352941;8.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report.csv new file mode 100644 index 0000000000000000000000000000000000000000..e3e4bbe522ce5cde1ea05710a18dd592e95701ce --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Report.csv @@ -0,0 +1,3 @@ +;Precision;Recall;F1;Support +Non;0.884615384615;0.884615384615;0.884615384615;26.0 +Oui;0.666666666667;0.666666666667;0.666666666667;9.0 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-1.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-1.png new file mode 100644 index 0000000000000000000000000000000000000000..80c3a2e0c39cdd1cd20b8a2ceebb60a9c64f9792 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-1.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-2.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-2.png new file mode 100644 index 0000000000000000000000000000000000000000..6e947567c37ce2075410660dbd536461db01192b Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-2.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-3.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-3.png new file mode 100644 index 0000000000000000000000000000000000000000..0028f0eb6cd3004379d8ca100d4bd0a4c131e338 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-3.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-4.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-4.png new file mode 100644 index 0000000000000000000000000000000000000000..1f46f04b7e90b76ff97dc30347c4160430142f15 Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score-4.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score.png b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score.png new file mode 100644 index 0000000000000000000000000000000000000000..6a62a5b930aeead4c116d1b1d9368c8e9eaf632a Binary files /dev/null and b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Score.png differ diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-1.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-1.csv new file mode 100644 index 0000000000000000000000000000000000000000..94937fae057ec88b3a6b8c94cbe145f22129677a --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-1.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.8 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.6224961479198767 +5;Mean of F1-Score of top 20 classes by F1-Score;0.6224961479198767 +6;Mean of F1-Score of top 30 classes by F1-Score;0.6224961479198767 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-2.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-2.csv new file mode 100644 index 0000000000000000000000000000000000000000..be7df7ca3ba374ddf4200288040d20b9096b8a42 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-2.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.885714285714 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8674242424242424 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8674242424242424 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8674242424242424 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-3.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-3.csv new file mode 100644 index 0000000000000000000000000000000000000000..4d47e5bf6e3be8f048844078df8e7edbae440e6c --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-3.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.8 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7619047619047619 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7619047619047619 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7619047619047619 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-4.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-4.csv new file mode 100644 index 0000000000000000000000000000000000000000..2d60df03ee29d988117314b9166acae57b8527b5 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats-4.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.857142857143 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.8057713651498335 +5;Mean of F1-Score of top 20 classes by F1-Score;0.8057713651498335 +6;Mean of F1-Score of top 30 classes by F1-Score;0.8057713651498335 diff --git a/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats.csv b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats.csv new file mode 100644 index 0000000000000000000000000000000000000000..e0555824ca01d3107bb9fe860c222a925c504c54 --- /dev/null +++ b/Code/Monoview/Results-ClassMonoView/2016_08_23-CMV-MultiOmic-RNASeq-Stats.csv @@ -0,0 +1,8 @@ +;Statistic;Values +0;Accuracy score on test;0.828571428571 +1;Top 10 classes by F1-Score;['Non', 'Oui'] +2;Worst 10 classes by F1-Score;['Oui', 'Non'] +3;Ratio of classes with F1-Score==0 of all classes;0.0 +4;Mean of F1-Score of top 10 classes by F1-Score;0.7756410256410255 +5;Mean of F1-Score of top 20 classes by F1-Score;0.7756410256410255 +6;Mean of F1-Score of top 30 classes by F1-Score;0.7756410256410255 diff --git a/Code/Multiview/ExecMultiview.py b/Code/Multiview/ExecMultiview.py index aef7169e2a6545a0b8f3f2df3c44e78eef39c1a3..ebc61a5bf3b3ddb37c202cc2eff975ccd8aa8310 100644 --- a/Code/Multiview/ExecMultiview.py +++ b/Code/Multiview/ExecMultiview.py @@ -15,12 +15,16 @@ import logging import time -def ExecMultiview(name, learningRate, nbFolds, nbCores, databaseType, path, gridSearch=False, **kwargs): +def ExecMultiview(DATASET, name, learningRate, nbFolds, nbCores, databaseType, path, LABELS_DICTIONARY, gridSearch=False, **kwargs): + + datasetLength = DATASET.get("Metadata").attrs["datasetLength"] + NB_VIEW = DATASET.get("Metadata").attrs["nbView"] + views = [str(DATASET.get("View"+str(viewIndex)).attrs["name"]) for viewIndex in range(NB_VIEW)] + NB_CLASS = DATASET.get("Metadata").attrs["nbClass"] CL_type = kwargs["CL_type"] views = kwargs["views"] NB_VIEW = kwargs["NB_VIEW"] - NB_CLASS = kwargs["NB_CLASS"] LABELS_NAMES = kwargs["LABELS_NAMES"] MumboKWARGS = kwargs["MumboKWARGS"] FusionKWARGS = kwargs["FusionKWARGS"] @@ -30,23 +34,9 @@ def ExecMultiview(name, learningRate, nbFolds, nbCores, databaseType, path, grid logging.info("### Classification - Database : " + str(name) + " ; Views : " + ", ".join(views) + " ; Algorithm : " + CL_type + " ; Cores : " + str(nbCores)) - - - logging.info("Start:\t Read " + str.upper(databaseType[1:]) + " Database Files for " + name) - - getDatabase = getattr(DB, "get" + name + "DB" + databaseType[1:]) - DATASET, LABELS_DICTIONARY = getDatabase(views, path, name, NB_CLASS, LABELS_NAMES) - datasetLength = DATASET["/datasetLength"][...] - NB_VIEW = DATASET.get("nbView").value - views = [str(DATASET["/View"+str(viewIndex)+"/name"][...]) for viewIndex in range(NB_VIEW)] - NB_CLASS = DATASET.get("nbClass").value - - logging.info("Info:\t Labels used: " + ", ".join(LABELS_DICTIONARY.values())) - logging.info("Info:\t Length of dataset:" + str(datasetLength)) - for viewIndex in range(NB_VIEW): - logging.info("Info:\t Shape of " + str(DATASET["/View"+str(viewIndex)+"/name"][...]) + " :" + str( - DATASET["View" + str(viewIndex) + "/shape"][...])) + logging.info("Info:\t Shape of " + str(DATASET.get("View"+str(viewIndex)).attrs["name"]) + " :" + str( + DATASET.get("View"+str(viewIndex)).shape)) logging.info("Done:\t Read Database Files") @@ -58,7 +48,7 @@ def ExecMultiview(name, learningRate, nbFolds, nbCores, databaseType, path, grid logging.info("Start:\t Determine "+str(nbFolds)+" folds") if nbFolds != 1: - kFolds = DB.getKFoldIndices(nbFolds, DATASET["/Labels/labelsArray"][...], NB_CLASS, learningIndices) + kFolds = DB.getKFoldIndices(nbFolds, DATASET.get("labels")[...], NB_CLASS, learningIndices) else: kFolds = [[], range(datasetLength)] @@ -99,7 +89,7 @@ def ExecMultiview(name, learningRate, nbFolds, nbCores, databaseType, path, grid logging.info("\tStart:\t Fold number " + str(foldIdx + 1)) trainIndices = [index for index in range(datasetLength) if index not in fold] DATASET_LENGTH = len(trainIndices) - classifier = classifierClass(NB_VIEW, DATASET_LENGTH, DATASET.get("/Labels/labelsArray").value, NB_CORES=nbCores, **initKWARGS) + classifier = classifierClass(NB_VIEW, DATASET_LENGTH, DATASET.get("labels").value, NB_CORES=nbCores, **initKWARGS) classifier.fit_hdf5(DATASET, trainIndices=trainIndices) kFoldClassifier.append(classifier) @@ -255,7 +245,17 @@ if __name__=='__main__': "LABELS_NAMES": args.CL_classes.split(":"), "FusionKWARGS": FusionKWARGS, "MumboKWARGS": MumboKWARGS} - ExecMultiview(args.name, args.CL_split, args.CL_nbFolds, args.CL_cores, args.type, args.pathF, gridSearch=True, **arguments) + + logging.info("Start:\t Read " + str.upper(args.type[1:]) + " Database Files for " + args.name) + + getDatabase = getattr(DB, "get" + args.name + "DB" + args.type[1:]) + DATASET, LABELS_DICTIONARY = getDatabase(views, args.pathF, args.name, NB_CLASS, LABELS_NAMES) + + logging.info("Info:\t Labels used: " + ", ".join(LABELS_DICTIONARY.values())) + logging.info("Info:\t Length of dataset:" + str(DATASET.get("Metadata").attrs["datasetlength"])) + + ExecMultiview(DATASET, args.name, args.CL_split, args.CL_nbFolds, args.CL_cores, args.type, args.pathF, + LABELS_DICTIONARY, gridSearch=True, **arguments) diff --git a/Code/Multiview/Fusion/Fusion.py b/Code/Multiview/Fusion/Fusion.py index 80e4fa2f74ac11d9df943fa650705906fa55aefc..d9b53ec8deb569fddf793d5f7c5c9aa8b2329fbb 100644 --- a/Code/Multiview/Fusion/Fusion.py +++ b/Code/Multiview/Fusion/Fusion.py @@ -1,14 +1,16 @@ from Methods import * + def gridSearch_hdf5(DATASET, classifiersNames): bestSettings = [] for classifierIndex, classifierName in enumerate(classifiersNames): classifierModule = globals()[classifierName] # Permet d'appeler une fonction avec une string classifierMethod = getattr(classifierModule, "gridSearch") - bestSettings.append(classifierMethod(DATASET["/View"+str(classifierIndex)+"/matrix"][...], - DATASET["/Labels/labelsArray"][...])) + bestSettings.append(classifierMethod(DATASET.get("View"+str(classifierIndex))[...], + DATASET.get("labels")[...])) return bestSettings + class Fusion: def __init__(self, NB_VIEW, DATASET_LENGTH, CLASS_LABELS, NB_CORES=1,**kwargs): fusionType = kwargs['fusionType'] @@ -32,7 +34,7 @@ class Fusion: def predict_hdf5(self, DATASET, usedIndices=None): if usedIndices == None: - usedIndices = range(DATASET.get("datasetLength").value) + usedIndices = range(DATASET.get("Metadata").attrs["datasetLength"]) if usedIndices: predictedLabels = self.classifier.predict_hdf5(DATASET, usedIndices=usedIndices) else: diff --git a/Code/Multiview/Fusion/Methods/EarlyFusion.py b/Code/Multiview/Fusion/Methods/EarlyFusion.py index 7cc9e3051d46b77a42ba442b928226c61b4a888f..761d1b4ce61953577e68ba4b48a0289cc33eaa97 100644 --- a/Code/Multiview/Fusion/Methods/EarlyFusion.py +++ b/Code/Multiview/Fusion/Methods/EarlyFusion.py @@ -16,13 +16,13 @@ class EarlyFusionClassifier(object): def makeMonoviewData_hdf5(self, DATASET, weights=None, usedIndices=None): if not usedIndices: - uesdIndices = range(DATASET.get("datasetLength").value) - NB_VIEW = DATASET.get("nbView").value + uesdIndices = range(DATASET.get("Metadata").attrs["datasetLength"]) + NB_VIEW = DATASET.get("Metadata").attrs["nbView"] if type(weights)=="NoneType": weights = np.array([1/NB_VIEW for i in range(NB_VIEW)]) if sum(weights)!=1: weights = weights/sum(weights) - self.monoviewData = np.concatenate([weights[viewIndex]*DATASET["/View"+str(viewIndex)+"/matrix"][usedIndices, :] + self.monoviewData = np.concatenate([weights[viewIndex]*DATASET.get("View"+str(viewIndex))[usedIndices, :] for viewIndex in np.arange(NB_VIEW)], axis=1) @@ -35,17 +35,17 @@ class WeightedLinear(EarlyFusionClassifier): def fit_hdf5(self, DATASET, trainIndices=None): if not trainIndices: - trainIndices = range(DATASET.get("datasetLength").value) + trainIndices = range(DATASET.get("Metadata").attrs["datasetLength"]) self.makeMonoviewData_hdf5(DATASET, weights=self.weights, usedIndices=trainIndices) monoviewClassifierModule = getattr(MonoviewClassifiers, self.monoviewClassifierName) - self.monoviewClassifier = monoviewClassifierModule.fit(self.monoviewData, DATASET["/Labels/labelsArray"][trainIndices], + self.monoviewClassifier = monoviewClassifierModule.fit(self.monoviewData, DATASET.get("labels")[trainIndices], NB_CORES=self.nbCores, **dict((str(configIndex),config) for configIndex,config in enumerate(self.monoviewClassifiersConfig))) def predict_hdf5(self, DATASET, usedIndices=None): if usedIndices == None: - usedIndices = range(DATASET.get("datasetLength").value) + usedIndices = range(DATASET.get("Metadata").attrs["datasetLength"]) if usedIndices: self.makeMonoviewData_hdf5(DATASET, weights=self.weights, usedIndices=usedIndices) predictedLabels = self.monoviewClassifier.predict(self.monoviewData) diff --git a/Code/Multiview/Fusion/Methods/LateFusion.py b/Code/Multiview/Fusion/Methods/LateFusion.py index 5b01eb72deb8652072765c38b77fcd7795e488e5..962f51b07e8af4c32b6ec5e5f4ffc95908456238 100644 --- a/Code/Multiview/Fusion/Methods/LateFusion.py +++ b/Code/Multiview/Fusion/Methods/LateFusion.py @@ -33,12 +33,12 @@ class LateFusionClassifier(object): def fit_hdf5(self, DATASET, trainIndices=None): if trainIndices == None: - trainIndices = range(DATASET.get("datasetLength").value) - nbView = DATASET.get("nbView").value + trainIndices = range(DATASET.get("Metadata").attrs["datasetLength"]) + nbView = DATASET.get("Metadata").attrs["nbView"] self.monoviewClassifiers = Parallel(n_jobs=self.nbCores)( delayed(fifMonoviewClassifier)(self.monoviewClassifiersNames[viewIndex], - DATASET["/View"+str(viewIndex)+"/matrix"][trainIndices, :], - DATASET["/Labels/labelsArray"][trainIndices], + DATASET.get("View"+str(viewIndex))[trainIndices, :], + DATASET.get("labels")[trainIndices], self.monoviewClassifiersConfigs[viewIndex]) for viewIndex in range(nbView)) @@ -53,13 +53,13 @@ class WeightedLinear(LateFusionClassifier): # Normalize weights ? # weights = weights/float(max(weights)) if usedIndices == None: - usedIndices = range(DATASET.get("datasetLength").value) + usedIndices = range(DATASET.get("Metadata").attrs["datasetLength"]) if usedIndices: predictedLabels = [] - viewScores = np.zeros((DATASET.get("nbView").value, len(usedIndices), DATASET.get("nbClass").value)) - for viewIndex in range(DATASET.get("nbView").value): + viewScores = np.zeros((DATASET.get("Metadata").attrs["nbView"], len(usedIndices), DATASET.get("Metadata").attrs["nbClass"])) + for viewIndex in range(DATASET.get("Metadata").attrs["nbView"]): viewScores[viewIndex] = self.monoviewClassifiers[viewIndex].predict_proba( - DATASET["/View" + str(viewIndex) + "/matrix"][usedIndices]) + DATASET.get("View" + str(viewIndex))[usedIndices]) for currentIndex, usedIndex in enumerate(usedIndices): predictedLabel = np.argmax(np.array( [max(viewScore) * weight for viewScore, weight in zip(viewScores[:, currentIndex], self.weights)], @@ -92,13 +92,13 @@ class SVMForLinear(LateFusionClassifier): def fit_hdf5(self, DATASET, trainIndices=None): if trainIndices == None: - trainIndices = range(DATASET.get("datasetLength").value) - nbViews = DATASET.get("nbView").value + trainIndices = range(DATASET.get("Metadata").attrs["datasetLength"]) + nbViews = DATASET.get("Metadata").attrs["nbView"] for viewIndex in range(nbViews): monoviewClassifier = getattr(MonoviewClassifiers, self.monoviewClassifiersNames[viewIndex]) self.monoviewClassifiers.append( - monoviewClassifier.fit(DATASET["/View" + str(viewIndex) + "/matrix"][trainIndices], - DATASET["/Labels/labelsArray"][trainIndices], + monoviewClassifier.fit(DATASET.get("View" + str(viewIndex))[trainIndices], + DATASET.get("labels")[trainIndices], NB_CORES=self.nbCores, **dict((str(configIndex), config) for configIndex, config in enumerate(self.monoviewClassifiersConfigs[viewIndex] @@ -109,13 +109,13 @@ class SVMForLinear(LateFusionClassifier): # Normalize weights ? # weights = weights/float(max(weights)) if usedIndices == None: - usedIndices = range(DATASET.get("datasetLength").value) + usedIndices = range(DATASET.get("Metadata").attrs["datasetLength"]) if usedIndices: - monoviewDecisions = np.zeros((len(usedIndices), DATASET.get("nbView").value), dtype=int) - for viewIndex in range(DATASET.get("nbView").value): + monoviewDecisions = np.zeros((len(usedIndices), DATASET.get("Metadata").attrs["nbView"]), dtype=int) + for viewIndex in range(DATASET.get("Metadata").attrs["nbView"]): monoviewClassifier = getattr(MonoviewClassifiers, self.monoviewClassifiersNames[viewIndex]) monoviewDecisions[:, viewIndex] = self.monoviewClassifiers[viewIndex].predict( - DATASET["/View" + str(viewIndex) + "/matrix"][usedIndices]) + DATASET.get("View" + str(viewIndex))[usedIndices]) predictedLabels = self.SVMClassifier.predict(monoviewDecisions) else: predictedLabels = [] @@ -123,12 +123,12 @@ class SVMForLinear(LateFusionClassifier): def SVMForLinearFusionFit(self, DATASET, usedIndices=None): self.SVMClassifier = OneVsOneClassifier(SVC()) - monoViewDecisions = np.zeros((len(usedIndices), DATASET.get("nbView").value), dtype=int) - for viewIndex in range(DATASET.get("nbView").value): + monoViewDecisions = np.zeros((len(usedIndices), DATASET.get("Metadata").attrs["nbView"]), dtype=int) + for viewIndex in range(DATASET.get("Metadata").attrs["nbView"]): monoViewDecisions[:, viewIndex] = self.monoviewClassifiers[viewIndex].predict( - DATASET["/View" + str(viewIndex) + "/matrix"][usedIndices]) + DATASET.get("View" + str(viewIndex))[usedIndices]) - self.SVMClassifier.fit(monoViewDecisions, DATASET["/Labels/labelsArray"][usedIndices]) + self.SVMClassifier.fit(monoViewDecisions, DATASET.get("labels")[usedIndices]) def getConfig(self, fusionMethodConfig, monoviewClassifiersNames,monoviewClassifiersConfigs): configString = "with SVM for linear \n\t-With monoview classifiers : " @@ -148,20 +148,20 @@ class MajorityVoting(LateFusionClassifier): def predict_hdf5(self, DATASET, usedIndices=None): if usedIndices == None: - usedIndices = range(DATASET.get("datasetLength").value) + usedIndices = range(DATASET.get("Metadata").attrs["datasetLength"]) if usedIndices: datasetLength = len(usedIndices) - votes = np.zeros((datasetLength, DATASET.get("nbClass").value), dtype=int) - monoViewDecisions = np.zeros((len(usedIndices), DATASET.get("nbView").value), dtype=int) - for viewIndex in range(DATASET.get("nbView").value): + votes = np.zeros((datasetLength, DATASET.get("Metadata").attrs["nbClass"]), dtype=int) + monoViewDecisions = np.zeros((len(usedIndices),DATASET.get("Metadata").attrs["nbView"]), dtype=int) + for viewIndex in range(DATASET.get("Metadata").attrs["nbView"]): monoViewDecisions[:, viewIndex] = self.monoviewClassifiers[viewIndex].predict( - DATASET["/View" + str(viewIndex) + "/matrix"][usedIndices]) + DATASET.get("View" + str(viewIndex))[usedIndices]) for exampleIndex in range(datasetLength): for featureClassification in monoViewDecisions[exampleIndex, :]: votes[exampleIndex, featureClassification] += 1 nbMaximum = len(np.where(votes[exampleIndex] == max(votes[exampleIndex]))[0]) try: - assert nbMaximum != DATASET.get("nbView").value + assert nbMaximum != DATASET.get("Metadata").attrs["nbView"] except: print "Majority voting can't decide, each classifier has voted for a different class" raise @@ -198,16 +198,14 @@ class BayesianInference(LateFusionClassifier): def predict_hdf5(self, DATASET, usedIndices=None): nbView = DATASET.get("nbView").value if usedIndices == None: - usedIndices = range(DATASET.get("datasetLength").value) + usedIndices = range(DATASET.get("Metadata").attrs["datasetLength"]) if sum(self.weights)!=1.0: self.weights = self.weights/sum(self.weights) if usedIndices: - viewScores = np.zeros((nbView, len(usedIndices), DATASET.get("nbClass").value)) + viewScores = np.zeros((nbView, len(usedIndices), DATASET.get("Metadata").attrs["nbClass"])) for viewIndex in range(nbView): - viewScores[viewIndex] = np.power(self.monoviewClassifiers[viewIndex].predict_proba(DATASET["/View" + - str(viewIndex) + - "/matrix"] + viewScores[viewIndex] = np.power(self.monoviewClassifiers[viewIndex].predict_proba(DATASET.get("View" + str(viewIndex)) [usedIndices]), self.weights[viewIndex]) predictedLabels = np.argmax(np.prod(viewScores, axis=1), axis=1) diff --git a/Code/Multiview/GetMultiviewDb.py b/Code/Multiview/GetMultiviewDb.py index c231b59c36c2c0a26b90395f218127a4131a8ef5..8a9dfa82e61ea17cdd3152f2068f277d19fbe749 100644 --- a/Code/Multiview/GetMultiviewDb.py +++ b/Code/Multiview/GetMultiviewDb.py @@ -114,8 +114,8 @@ def isUseful (labelSupports, index, CLASS_LABELS, labelDict): def splitDataset(DATASET, LEARNING_RATE, DATASET_LENGTH): - LABELS = DATASET["/Labels/labelsArray"][...] - NB_CLASS = int(DATASET["/nbClass"][...]) + LABELS = DATASET.get("labels")[...] + NB_CLASS = int(DATASET["Metadata"].attrs["nbClass"]) validationIndices = extractRandomTrainingSet(LABELS, 1-LEARNING_RATE, DATASET_LENGTH, NB_CLASS) validationIndices.sort() return validationIndices @@ -174,7 +174,6 @@ def getDbfromCSV(path): for file in files: if file[-8:]=='plus.csv' and file[:7]=='sample1': - print 'poulet' X = open(path+file) for x, i in zip(X, range(20)): DATA[0, i+20] = np.array([float(coord) for coord in x.strip().split('\t')]) @@ -254,7 +253,7 @@ def getClassicDBcsv(views, pathF, nameDB, NB_CLASS, LABELS_NAMES): def getCaltechDBcsv(views, pathF, nameDB, NB_CLASS, LABELS_NAMES): - DATASET = h5py.File(nameDB+".hdf5", "w") + datasetFile = h5py.File(nameDB+".hdf5", "w") fullLabels = np.genfromtxt(pathF + nameDB + '-ClassLabels.csv', delimiter=';').astype(int) if len(set(fullLabels))>NB_CLASS: labelsAvailable = list(set(fullLabels)) @@ -267,19 +266,19 @@ def getCaltechDBcsv(views, pathF, nameDB, NB_CLASS, LABELS_NAMES): for viewIndex, view in enumerate(views): viewFile = pathF + nameDB + "-" + view + '.csv' viewMatrix = np.array(np.genfromtxt(viewFile, delimiter=';'))[usedIndices, :] - DATASET["/View"+str(viewIndex)+"/matrix"] = viewMatrix - DATASET["/View"+str(viewIndex)+"/name"] = view - DATASET["/View"+str(viewIndex)+"/shape"] = viewMatrix.shape + datasetFile["/View"+str(viewIndex)+"/matrix"] = viewMatrix + datasetFile["/View"+str(viewIndex)+"/name"] = view + datasetFile["/View"+str(viewIndex)+"/shape"] = viewMatrix.shape - DATASET["/Labels/labelsArray"] = fullLabels[usedIndices] + datasetFile["/Labels/labelsArray"] = fullLabels[usedIndices] labelsNamesFile = open(pathF+nameDB+'-ClassLabels-Description.csv') labelsDictionary = dict((classIndice, labelName) for (classIndice, labelName) in [(int(line.strip().split(";")[0]), line.strip().split(";")[1]) for lineIndex, line in labelsNamesFile if int(line.strip().split(";")[0]) in labelsUsed]) - DATASET["/datasetLength"] = len(DATASET["/Labels/labelsArray"][...]) - DATASET["/nbView"] = len(views) - DATASET["/nbClass"] = len(set(DATASET["/Labels/labelsArray"][...])) + datasetFile["/datasetLength"] = len(datasetFile["/Labels/labelsArray"][...]) + datasetFile["/nbView"] = len(views) + datasetFile["/nbClass"] = len(set(datasetFile["/Labels/labelsArray"][...])) # keptLabelsIndices = [labelIndice for labelIndice, labelName in labelsDictionary.items() if labelName in LABELS_NAMES] # maxNumbreOfClasses = len(labelsDictionary) # @@ -293,125 +292,131 @@ def getCaltechDBcsv(views, pathF, nameDB, NB_CLASS, LABELS_NAMES): # elif len(LABELS_NAMES) > NB_CLASS: # keptLabelsIndices = keptLabelsIndices[:NB_CLASS] # - # DATASET = {} + # datasetFile = {} # # for featureIndex in range(len(fullDataset)): - # DATASET[featureIndex]=np.array([fullDataset[exampleIndice] for exampleIndice in range(datasetLength) if fullClasslabels[exampleIndice] in keptLabelsIndices]) + # datasetFile[featureIndex]=np.array([fullDataset[exampleIndice] for exampleIndice in range(datasetLength) if fullClasslabels[exampleIndice] in keptLabelsIndices]) # # CLASS_LABELS = np.array([keptLabelsIndices.index(classLabel) for classLabel in fullClasslabels if classLabel in keptLabelsIndices]) # DATASET_LENGTH = len(CLASS_LABELS) # # LABELS_DICTIONARY = dict((keptLabelsIndices.index(classLabel), labelsDictionary[classLabel]) for classLabel in keptLabelsIndices) - return DATASET, labelsDictionary + return datasetFile, labelsDictionary def getMultiOmicDBcsv(features, path, name, NB_CLASS, LABELS_NAMES): - datasetFile = h5py.File(path+"MultiOmicDataset.hdf5", "w") + datasetFile = h5py.File(path+"MultiOmic.hdf5", "w") logging.debug("Start:\t Getting Methylation Data") methylData = np.genfromtxt(path+"matching_methyl.csv", delimiter=',') - datasetFile["/View0/matrix"] = methylData - datasetFile["/View0/name"] = "Methyl" - datasetFile["/View0/shape"] = methylData.shape + methylDset = datasetFile.create_dataset("View0", methylData.shape) + methylDset[...] = methylData + methylDset.attrs["name"] = "Methyl" logging.debug("Done:\t Getting Methylation Data") logging.debug("Start:\t Getting MiRNA Data") mirnaData = np.genfromtxt(path+"matching_mirna.csv", delimiter=',') - datasetFile["/View1/matrix"] = mirnaData - datasetFile["/View1/name"] = "MiRNA_" - datasetFile["/View1/shape"] = mirnaData.shape + mirnaDset = datasetFile.create_dataset("View1", mirnaData.shape) + mirnaDset[...] = mirnaData + mirnaDset.attrs["name"]="MiRNA_" logging.debug("Done:\t Getting MiRNA Data") logging.debug("Start:\t Getting RNASeq Data") rnaseqData = np.genfromtxt(path+"matching_rnaseq.csv", delimiter=',') - datasetFile["/View2/matrix"] = rnaseqData - datasetFile["/View2/name"] = "RNASeq" - datasetFile["/View2/shape"] = rnaseqData.shape + rnaseqDset = datasetFile.create_dataset("View2", rnaseqData.shape) + rnaseqDset[...] = rnaseqData + rnaseqDset.attrs["name"]="RANSeq" logging.debug("Done:\t Getting RNASeq Data") logging.debug("Start:\t Getting Clinical Data") clinical = np.genfromtxt(path+"clinicalMatrix.csv", delimiter=',') - datasetFile["/View3/matrix"] = clinical - datasetFile["/View3/name"] = "Clinic" - datasetFile["/View3/shape"] = clinical.shape + clinicalDset = datasetFile.create_dataset("View3", clinical.shape) + clinicalDset[...] = clinical + clinicalDset.attrs["name"] = "Clinic" logging.debug("Done:\t Getting Clinical Data") labelFile = open(path+'brca_labels_triple-negatif.csv') - LABELS = np.array([int(line.strip().split(',')[1]) for line in labelFile]) - datasetFile["/Labels/labelsArray"] = LABELS - - datasetFile["/nbView"] = 4 - datasetFile["/nbClass"] = 2 - datasetFile["/datasetLength"] = len(datasetFile["/Labels/labelsArray"]) + labels = np.array([int(line.strip().split(',')[1]) for line in labelFile]) + labelsDset = datasetFile.create_dataset("labels", labels.shape) + labelsDset[...] = labels + labelsDset.attrs["name"] = "Labels" + + metaDataGrp = datasetFile.create_group("Metadata") + metaDataGrp.attrs["nbView"] = 4 + metaDataGrp.attrs["nbClass"] = 2 + metaDataGrp.attrs["datasetLength"] = len(labels) labelDictionary = {0:"No", 1:"Yes"} + datasetFile.close() + datasetFile = h5py.File(path+"MultiOmic.hdf5", "r") # datasetFile = getPseudoRNASeq(datasetFile) return datasetFile, labelDictionary def getModifiedMultiOmicDBcsv(features, path, name, NB_CLASS, LABELS_NAMES): - datasetFile = h5py.File(path+"ModifiedMultiOmicDataset.hdf5", "w") + datasetFile = h5py.File(path+"ModifiedMultiOmic.hdf5", "w") logging.debug("Start:\t Getting Methylation Data") methylData = np.genfromtxt(path+"matching_methyl.csv", delimiter=',') - datasetFile["/View0/matrix"] = methylData - datasetFile["/View0/name"] = "Methyl_" - datasetFile["/View0/shape"] = methylData.shape + methylDset = datasetFile.create_dataset("View0", methylData.shape) + methylDset[...] = methylData + methylDset.attrs["name"] = "Methyl_" logging.debug("Done:\t Getting Methylation Data") logging.debug("Start:\t Getting MiRNA Data") mirnaData = np.genfromtxt(path+"matching_mirna.csv", delimiter=',') - datasetFile["/View1/matrix"] = mirnaData - datasetFile["/View1/name"] = "MiRNA__" - datasetFile["/View1/shape"] = mirnaData.shape + mirnaDset = datasetFile.create_dataset("View1", mirnaData.shape) + mirnaDset[...] = mirnaData + mirnaDset.attrs["name"]="MiRNA__" logging.debug("Done:\t Getting MiRNA Data") logging.debug("Start:\t Getting RNASeq Data") rnaseqData = np.genfromtxt(path+"matching_rnaseq.csv", delimiter=',') - datasetFile["/View2/matrix"] = rnaseqData - datasetFile["/View2/name"] = "RNASeq_" - datasetFile["/View2/shape"] = rnaseqData.shape + rnaseqDset = datasetFile.create_dataset("View2", rnaseqData.shape) + rnaseqDset[...] = rnaseqData + rnaseqDset.attrs["name"]="RANSeq_" logging.debug("Done:\t Getting RNASeq Data") logging.debug("Start:\t Getting Clinical Data") clinical = np.genfromtxt(path+"clinicalMatrix.csv", delimiter=',') - datasetFile["/View3/matrix"] = clinical - datasetFile["/View3/name"] = "Clinic_" - datasetFile["/View3/shape"] = clinical.shape + clinicalDset = datasetFile.create_dataset("View3", clinical.shape) + clinicalDset[...] = clinical + clinicalDset.attrs["name"] = "Clinic_" logging.debug("Done:\t Getting Clinical Data") - logging.debug("Start:\t Getting Labels") labelFile = open(path+'brca_labels_triple-negatif.csv') - LABELS = np.array([int(line.strip().split(',')[1]) for line in labelFile]) - datasetFile["/Labels/labelsArray"] = LABELS - logging.debug("Done:\t Getting Labels") - - logging.debug("Start:\t Getting Data Shape") - datasetFile["/nbView"] = 5 - datasetFile["/nbClass"] = 2 - datasetFile["/datasetLength"] = len(datasetFile["/Labels/labelsArray"]) + labels = np.array([int(line.strip().split(',')[1]) for line in labelFile]) + labelsDset = datasetFile.create_dataset("labels", labels.shape) + labelsDset[...] = labels + labelsDset.attrs["name"] = "Labels" + + metaDataGrp = datasetFile.create_group("Metadata") + metaDataGrp.attrs["nbView"] = 4 + metaDataGrp.attrs["nbClass"] = 2 + metaDataGrp.attrs["datasetLength"] = len(labels) labelDictionary = {0:"No", 1:"Yes"} - logging.debug("Done:\t Getting Data Shape") logging.debug("Start:\t Getting Modified RNASeq Data") - RNASeq = datasetFile["View2/matrix"][...] - modifiedRNASeq = np.zeros((datasetFile.get("datasetLength/").value, datasetFile["View2/shape"][1]), dtype=int) + RNASeq = datasetFile["View2"][...] + modifiedRNASeq = np.zeros((datasetFile.get("Metadata").attrs["datasetLength"], datasetFile.get("View2").shape[1]), dtype=int) for exampleindice, exampleArray in enumerate(RNASeq): RNASeqDictionary = dict((index, value) for index, value in enumerate(exampleArray)) sorted_x = sorted(RNASeqDictionary.items(), key=operator.itemgetter(1)) modifiedRNASeq[exampleindice] = np.array([index for (index, value) in sorted_x], dtype=int) - datasetFile["/View4/matrix"] = modifiedRNASeq - datasetFile["/View4/name"] = "MRNASeq" - datasetFile["/View4/shape"] = modifiedRNASeq.shape + mrnaseqDset = datasetFile.create_dataset("View4", modifiedRNASeq.shape, data=modifiedRNASeq) + mrnaseqDset.attrs["name"] = "MRNASeq" logging.debug("Done:\t Getting Modified RNASeq Data") + datasetFile.close() + datasetFile = h5py.File(path+"ModifiedMultiOmic.hdf5", "r") + return datasetFile, labelDictionary def getModifiedMultiOmicDBhdf5(features, path, name, NB_CLASS, LABELS_NAMES): - datasetFile = h5py.File(path+"ModifiedMultiOmicDataset.hdf5", "r") + datasetFile = h5py.File(path+"ModifiedMultiOmic.hdf5", "r") labelDictionary = {0:"No", 1:"Yes"} return datasetFile, labelDictionary @@ -443,7 +448,7 @@ def getPseudoRNASeq(dataset): def getMultiOmicDBhdf5(features, path, name, NB_CLASS, LABELS_NAMES): - datasetFile = h5py.File(path+"MultiOmicDataset.hdf5", "r") + datasetFile = h5py.File(path+"MultiOmic.hdf5", "r") labelDictionary = {0:"No", 1:"Yes"} return datasetFile, labelDictionary diff --git a/Code/Multiview/Mumbo/Mumbo.py b/Code/Multiview/Mumbo/Mumbo.py index c66f17d8ae23b69b87a5aee4f26d7a437c697f48..912d6ebab17eb2160e0c69ec9d179bdbe808d900 100644 --- a/Code/Multiview/Mumbo/Mumbo.py +++ b/Code/Multiview/Mumbo/Mumbo.py @@ -43,8 +43,8 @@ def gridSearch_hdf5(DATASET, classifiersNames): for classifierIndex, classifierName in enumerate(classifiersNames): classifierModule = globals()[classifierName] # Permet d'appeler une fonction avec une string classifierMethod = getattr(classifierModule, "gridSearch") - bestSettings.append(classifierMethod(DATASET["/View"+str(classifierIndex)+"/matrix"][...], - DATASET["/Labels/labelsArray"][...])) + bestSettings.append(classifierMethod(DATASET.get("View"+str(classifierIndex))[...], + DATASET.get("labels")[...])) return bestSettings @@ -124,11 +124,11 @@ class Mumbo: def fit_hdf5(self, DATASET, trainIndices=None): # Initialization if not trainIndices: - trainIndices = range(DATASET.get("datasetLength").value) - NB_CLASS = DATASET["/nbClass"][...] - NB_VIEW = DATASET["/nbView"][...] + trainIndices = range(DATASET.get("Metadata").attrs["datasetLength"]) + NB_CLASS = DATASET.get("Metadata").attrs["nbClass"] + NB_VIEW = DATASET.get("Metadata").attrs["nbView"] DATASET_LENGTH = len(trainIndices) - LABELS = DATASET["/Labels/labelsArray"][trainIndices] + LABELS = DATASET["labels"][trainIndices] # costMatrices, \ # generalCostMatrix, fs, ds, edges, alphas, \ # predictions, generalAlphas, generalFs = initialize(NB_CLASS, NB_VIEW, @@ -161,7 +161,7 @@ class Mumbo: self.updateCostmatrices(NB_VIEW, DATASET_LENGTH, NB_CLASS, LABELS) bestView, edge = self.chooseView(NB_VIEW, LABELS, DATASET_LENGTH) self.bestViews[self.iterIndex] = bestView - logging.debug("\t\t\t Best view : \t\t"+DATASET["/View"+str(bestView)+"/name"][...]) + logging.debug("\t\t\t Best view : \t\t"+DATASET["View"+str(bestView)].attrs["name"]) if areBad.all(): self.generalAlphas[self.iterIndex] = 0. else: @@ -174,9 +174,9 @@ class Mumbo: # finalFs = computeFinalFs(DATASET_LENGTH, NB_CLASS, generalAlphas, predictions, bestViews, LABELS, NB_ITER) def predict_hdf5(self, DATASET, usedIndices=None): - NB_CLASS = DATASET.get("nbClass").value + NB_CLASS = DATASET.get("Metadata").attrs["nbClass"] if usedIndices == None: - usedIndices = range(DATASET.get("datasetLength").value) + usedIndices = range(DATASET.get("Metadata").attrs["datasetLength"]) if usedIndices: DATASET_LENGTH = len(usedIndices) predictedLabels = np.zeros(DATASET_LENGTH) @@ -231,11 +231,11 @@ class Mumbo: iterIndex = self.iterIndex trainedClassifiersAndLabels = Parallel(n_jobs=NB_JOBS)( delayed(trainWeakClassifier_hdf5)(classifiersNames[viewIndex], - DATASET["/View"+str(viewIndex)+"/matrix"][trainIndices, :], - DATASET["/Labels/labelsArray"][trainIndices], + DATASET.get("View"+str(viewIndex))[trainIndices, :], + DATASET.get("labels")[trainIndices], DATASET_LENGTH, viewIndex, classifiersConfigs[viewIndex], - str(DATASET["/View"+str(viewIndex)+"/name"][...]), iterIndex, costMatrices) + DATASET.get("View"+str(viewIndex)).attrs["name"], iterIndex, costMatrices) for viewIndex in range(NB_VIEW)) for viewIndex, (classifier, labelsArray, isBad, averageAccuracy) in enumerate(trainedClassifiersAndLabels): @@ -439,7 +439,7 @@ class Mumbo: def classifyMumbobyIter_hdf5(self, DATASET, usedIndices=None, NB_CLASS=2): if usedIndices == None: - usedIndices = range(DATASET.get("datasetLength").value) + usedIndices = range(DATASET.get("Metadata").attrs["datasetLength"]) if usedIndices: DATASET_LENGTH = len(usedIndices) predictedLabels = np.zeros((DATASET_LENGTH, self.nbIter)) @@ -449,7 +449,7 @@ class Mumbo: votesByIter = np.zeros((DATASET_LENGTH, NB_CLASS)) for usedExampleIndex, exampleIndex in enumerate(usedIndices): - data = np.array([np.array(DATASET["/View" + str(int(view)) + "/matrix"][exampleIndex, :])]) + data = np.array([np.array(DATASET.get("View" + str(int(view)))[exampleIndex, :])]) votesByIter[usedExampleIndex, int(classifier.predict(data))] += alpha[view] votes[usedExampleIndex] = votes[usedExampleIndex] + np.array(votesByIter[usedExampleIndex]) predictedLabels[usedExampleIndex, iterIndex] = np.argmax(votes[usedExampleIndex]) diff --git a/Code/Multiview/Mumbo/analyzeResults.py b/Code/Multiview/Mumbo/analyzeResults.py index 7002d6e1d07c268c132a8a47b1ea8aa0b1a4489e..8d32066b5acc42666c21c70f4295eed8b6af4d4a 100644 --- a/Code/Multiview/Mumbo/analyzeResults.py +++ b/Code/Multiview/Mumbo/analyzeResults.py @@ -25,7 +25,7 @@ def plotAccuracyByIter(trainAccuracy, testAccuracy, validationAccuracy, NB_ITER, titleString = "" for view, classifierConfig in zip(features, classifierAnalysis): titleString += "\n" + view + " : " + classifierConfig - titleString+="Best view = " + features[int(mainView)] + titleString+="\nBest view = " + features[int(mainView)] ax1.set_title("Accuracy depending on iteration", fontsize=20) plt.text(0.5, 1.08, titleString, @@ -63,7 +63,7 @@ def classifyMumbobyIter_hdf5(usedIndices, DATASET, classifiers, alphas, views, N votesByIter = np.zeros((DATASET_LENGTH, NB_CLASS)) for usedExampleIndex, exampleIndex in enumerate(usedIndices): - data = np.array([np.array(DATASET["/View" + str(int(view)) + "/matrix"][exampleIndex, :])]) + data = np.array([np.array(DATASET.get("View" + str(int(view)))[exampleIndex, :])]) votesByIter[usedExampleIndex, int(classifier.predict(data))] += alpha votes[usedExampleIndex] = votes[usedExampleIndex] + np.array(votesByIter[usedExampleIndex]) predictedLabels[usedExampleIndex, iterIndex] = np.argmax(votes[usedExampleIndex]) @@ -79,13 +79,13 @@ def error(testLabels, computedLabels): def execute(kFoldClassifier, kFoldPredictedTrainLabels, kFoldPredictedTestLabels, kFoldPredictedValidationLabels, DATASET, initKWARGS, LEARNING_RATE, LABELS_DICTIONARY, views, NB_CORES, times, kFolds, databaseName, nbFolds, validationIndices): - CLASS_LABELS = DATASET["/Labels/labelsArray"][...] + CLASS_LABELS = DATASET.get("labels")[...] NB_ITER, classifierNames, classifierConfigs = initKWARGS.values() - nbView = DATASET.get("nbView").value - viewNames = [DATASET.get("/View"+str(viewIndex)+"/name").value for viewIndex in range(nbView)] + nbView = DATASET.get("Metadata").attrs["nbView"] + viewNames = [DATASET.get("View"+str(viewIndex)).attrs["name"] for viewIndex in range(nbView)] - DATASET_LENGTH = DATASET.get("datasetLength").value-len(validationIndices) - NB_CLASS = DATASET.get("nbClass").value + DATASET_LENGTH = DATASET.get("Metadata").attrs["datasetLength"]-len(validationIndices) + NB_CLASS = DATASET.get("Metadata").attrs["nbClass"] kFoldPredictedTrainLabelsByIter = [] kFoldPredictedTestLabelsByIter = [] kFoldPredictedValidationLabelsByIter = [] @@ -179,7 +179,7 @@ def execute(kFoldClassifier, kFoldPredictedTrainLabels, kFoldPredictedTestLabels str(kFoldAccuracyOnTrainByIter[foldIdx][iterIndex]) + '\n\t\t\tAccuracy on test : ' + \ str(kFoldAccuracyOnTestByIter[foldIdx][iterIndex]) + '\n\t\t\tAccuracy on validation : '+\ str(kFoldAccuracyOnValidationByIter[foldIdx][iterIndex]) + '\n\t\t\tSelected View : ' + \ - str(DATASET["/View"+str(int(kFoldBestViews[foldIdx][iterIndex]))+"/name"][...]) + str(DATASET["View"+str(int(kFoldBestViews[foldIdx][iterIndex]))].attrs["name"]) stringAnalysis += "\n\t\t- Mean : \n\t\t\t Accuracy on train : " + str( np.array(kFoldAccuracyOnTrainByIter)[:, iterIndex].mean()) + \ "\n\t\t\t Accuracy on test : " + str(np.array(kFoldAccuracyOnTestByIter)[:, iterIndex].mean()) diff --git a/Code/Multiview/Results/20160823-095233-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/Multiview/Results/20160823-095233-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..a48d9eb2ffdf0f85e0465f12416c79e120f3f3f5 --- /dev/null +++ b/Code/Multiview/Results/20160823-095233-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,8 @@ +2016-08-23 09:52:33,036 INFO: ### Main Programm for Multiview Classification +2016-08-23 09:52:33,036 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4 +2016-08-23 09:52:33,036 INFO: Start: Read CSV Database Files for ModifiedMultiOmic +2016-08-23 09:52:33,135 DEBUG: Start: Getting Methylation Data +2016-08-23 09:52:46,092 DEBUG: Done: Getting Methylation Data +2016-08-23 09:52:46,092 DEBUG: Start: Getting MiRNA Data +2016-08-23 09:52:46,602 DEBUG: Done: Getting MiRNA Data +2016-08-23 09:52:46,602 DEBUG: Start: Getting RNASeq Data diff --git a/Code/Multiview/Results/20160823-095734-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/Multiview/Results/20160823-095734-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..c37799d18f26366b3c7a4e4441d21f8301926094 --- /dev/null +++ b/Code/Multiview/Results/20160823-095734-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,8 @@ +2016-08-23 09:57:34,864 INFO: ### Main Programm for Multiview Classification +2016-08-23 09:57:34,864 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4 +2016-08-23 09:57:34,864 INFO: Start: Read CSV Database Files for ModifiedMultiOmic +2016-08-23 09:57:34,871 DEBUG: Start: Getting Methylation Data +2016-08-23 09:57:47,844 DEBUG: Done: Getting Methylation Data +2016-08-23 09:57:47,844 DEBUG: Start: Getting MiRNA Data +2016-08-23 09:57:48,349 DEBUG: Done: Getting MiRNA Data +2016-08-23 09:57:48,349 DEBUG: Start: Getting RNASeq Data diff --git a/Code/Multiview/Results/20160823-100003-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/Multiview/Results/20160823-100003-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..7942e10e852b8670ca5921038e7ab58d1c8584c9 --- /dev/null +++ b/Code/Multiview/Results/20160823-100003-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,11 @@ +2016-08-23 10:00:03,590 INFO: ### Main Programm for Multiview Classification +2016-08-23 10:00:03,591 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4 +2016-08-23 10:00:03,593 INFO: Start: Read CSV Database Files for ModifiedMultiOmic +2016-08-23 10:00:03,596 DEBUG: Start: Getting Methylation Data +2016-08-23 10:00:17,099 DEBUG: Done: Getting Methylation Data +2016-08-23 10:00:17,102 DEBUG: Start: Getting MiRNA Data +2016-08-23 10:00:17,613 DEBUG: Done: Getting MiRNA Data +2016-08-23 10:00:17,615 DEBUG: Start: Getting RNASeq Data +2016-08-23 10:00:57,371 DEBUG: Done: Getting RNASeq Data +2016-08-23 10:00:57,441 DEBUG: Start: Getting Clinical Data +2016-08-23 10:00:57,685 DEBUG: Done: Getting Clinical Data diff --git a/Code/Multiview/Results/20160823-100209-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/Multiview/Results/20160823-100209-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..5dfa9429137486d5d60f8b9f05aa51280939fe54 --- /dev/null +++ b/Code/Multiview/Results/20160823-100209-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,4 @@ +2016-08-23 10:02:09,222 INFO: ### Main Programm for Multiview Classification +2016-08-23 10:02:09,224 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4 +2016-08-23 10:02:09,225 INFO: Start: Read CSV Database Files for ModifiedMultiOmic +2016-08-23 10:02:09,239 DEBUG: Start: Getting Methylation Data diff --git a/Code/Multiview/Results/20160823-100355-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/Multiview/Results/20160823-100355-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..1be1b75a46808499f8b1c7cd8350e3ccf1d513ab --- /dev/null +++ b/Code/Multiview/Results/20160823-100355-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,11 @@ +2016-08-23 10:03:55,104 INFO: ### Main Programm for Multiview Classification +2016-08-23 10:03:55,106 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4 +2016-08-23 10:03:55,108 INFO: Start: Read CSV Database Files for ModifiedMultiOmic +2016-08-23 10:03:55,111 DEBUG: Start: Getting Methylation Data +2016-08-23 10:04:07,386 DEBUG: Done: Getting Methylation Data +2016-08-23 10:04:07,390 DEBUG: Start: Getting MiRNA Data +2016-08-23 10:04:07,898 DEBUG: Done: Getting MiRNA Data +2016-08-23 10:04:07,900 DEBUG: Start: Getting RNASeq Data +2016-08-23 10:04:48,716 DEBUG: Done: Getting RNASeq Data +2016-08-23 10:04:48,795 DEBUG: Start: Getting Clinical Data +2016-08-23 10:04:48,946 DEBUG: Done: Getting Clinical Data diff --git a/Code/Multiview/Results/20160823-100549-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/Multiview/Results/20160823-100549-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..01683a2f8499fc9056e2a27387b12bdbd77b1668 --- /dev/null +++ b/Code/Multiview/Results/20160823-100549-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,12 @@ +2016-08-23 10:05:49,567 INFO: ### Main Programm for Multiview Classification +2016-08-23 10:05:49,569 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4 +2016-08-23 10:05:49,571 INFO: Start: Read CSV Database Files for ModifiedMultiOmic +2016-08-23 10:05:49,573 DEBUG: Start: Getting Methylation Data +2016-08-23 10:06:02,626 DEBUG: Done: Getting Methylation Data +2016-08-23 10:06:02,631 DEBUG: Start: Getting MiRNA Data +2016-08-23 10:06:03,136 DEBUG: Done: Getting MiRNA Data +2016-08-23 10:06:03,138 DEBUG: Start: Getting RNASeq Data +2016-08-23 10:06:42,875 DEBUG: Done: Getting RNASeq Data +2016-08-23 10:06:42,951 DEBUG: Start: Getting Clinical Data +2016-08-23 10:06:43,040 DEBUG: Done: Getting Clinical Data +2016-08-23 10:06:43,074 DEBUG: Start: Getting Modified RNASeq Data diff --git a/Code/Multiview/Results/20160823-100728-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/Multiview/Results/20160823-100728-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..adb5887180bd1fe087fe21ca83842db001f3d3fa --- /dev/null +++ b/Code/Multiview/Results/20160823-100728-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,12 @@ +2016-08-23 10:07:28,724 INFO: ### Main Programm for Multiview Classification +2016-08-23 10:07:28,726 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4 +2016-08-23 10:07:28,727 INFO: Start: Read CSV Database Files for ModifiedMultiOmic +2016-08-23 10:07:28,741 DEBUG: Start: Getting Methylation Data +2016-08-23 10:07:41,773 DEBUG: Done: Getting Methylation Data +2016-08-23 10:07:41,777 DEBUG: Start: Getting MiRNA Data +2016-08-23 10:07:42,306 DEBUG: Done: Getting MiRNA Data +2016-08-23 10:07:42,308 DEBUG: Start: Getting RNASeq Data +2016-08-23 10:08:23,162 DEBUG: Done: Getting RNASeq Data +2016-08-23 10:08:23,200 DEBUG: Start: Getting Clinical Data +2016-08-23 10:08:23,271 DEBUG: Done: Getting Clinical Data +2016-08-23 10:08:23,305 DEBUG: Start: Getting Modified RNASeq Data diff --git a/Code/Multiview/Results/20160823-101021-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/Multiview/Results/20160823-101021-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..f7643c001f51913c4113a9305de442e9bf9a720f --- /dev/null +++ b/Code/Multiview/Results/20160823-101021-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,12 @@ +2016-08-23 10:10:21,670 INFO: ### Main Programm for Multiview Classification +2016-08-23 10:10:21,674 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4 +2016-08-23 10:10:21,678 INFO: Start: Read CSV Database Files for ModifiedMultiOmic +2016-08-23 10:10:21,700 DEBUG: Start: Getting Methylation Data +2016-08-23 10:10:34,807 DEBUG: Done: Getting Methylation Data +2016-08-23 10:10:34,811 DEBUG: Start: Getting MiRNA Data +2016-08-23 10:10:35,320 DEBUG: Done: Getting MiRNA Data +2016-08-23 10:10:35,321 DEBUG: Start: Getting RNASeq Data +2016-08-23 10:11:16,285 DEBUG: Done: Getting RNASeq Data +2016-08-23 10:11:16,320 DEBUG: Start: Getting Clinical Data +2016-08-23 10:11:16,385 DEBUG: Done: Getting Clinical Data +2016-08-23 10:11:16,419 DEBUG: Start: Getting Modified RNASeq Data diff --git a/Code/Multiview/Results/20160823-101135-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log b/Code/Multiview/Results/20160823-101135-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..4bea59113251b12fb3368ef513a8b02eb9ff7963 --- /dev/null +++ b/Code/Multiview/Results/20160823-101135-CMultiV-Fusion-Methyl_MiRNA_RNASEQ_Clinical-ModifiedMultiOmic-LOG.log @@ -0,0 +1,13 @@ +2016-08-23 10:11:35,535 INFO: ### Main Programm for Multiview Classification +2016-08-23 10:11:35,537 INFO: ### Classification - Database : ModifiedMultiOmic ; Views : Methyl, MiRNA, RNASEQ, Clinical ; Algorithm : Fusion ; Cores : 4 +2016-08-23 10:11:35,539 INFO: Start: Read CSV Database Files for ModifiedMultiOmic +2016-08-23 10:11:35,551 DEBUG: Start: Getting Methylation Data +2016-08-23 10:11:48,585 DEBUG: Done: Getting Methylation Data +2016-08-23 10:11:48,589 DEBUG: Start: Getting MiRNA Data +2016-08-23 10:11:49,095 DEBUG: Done: Getting MiRNA Data +2016-08-23 10:11:49,096 DEBUG: Start: Getting RNASeq Data +2016-08-23 10:12:28,932 DEBUG: Done: Getting RNASeq Data +2016-08-23 10:12:29,078 DEBUG: Start: Getting Clinical Data +2016-08-23 10:12:29,238 DEBUG: Done: Getting Clinical Data +2016-08-23 10:12:29,275 DEBUG: Start: Getting Modified RNASeq Data +2016-08-23 10:13:18,889 DEBUG: Done: Getting Modified RNASeq Data diff --git a/Code/Multiview/Results/20160823-101459-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log b/Code/Multiview/Results/20160823-101459-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..e342741951a893a6556747ed89fb07819d645129 --- /dev/null +++ b/Code/Multiview/Results/20160823-101459-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log @@ -0,0 +1,8 @@ +2016-08-23 10:14:59,031 INFO: ### Main Programm for Multiview Classification +2016-08-23 10:14:59,031 INFO: ### Classification - Database : MultiOmic ; Views : RGB, HOG, SIFT ; Algorithm : Mumbo ; Cores : 1 +2016-08-23 10:14:59,031 INFO: Start: Read CSV Database Files for MultiOmic +2016-08-23 10:14:59,041 DEBUG: Start: Getting Methylation Data +2016-08-23 10:15:12,871 DEBUG: Done: Getting Methylation Data +2016-08-23 10:15:12,872 DEBUG: Start: Getting MiRNA Data +2016-08-23 10:15:13,397 DEBUG: Done: Getting MiRNA Data +2016-08-23 10:15:13,398 DEBUG: Start: Getting RNASeq Data diff --git a/Code/Multiview/Results/20160823-101527-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log b/Code/Multiview/Results/20160823-101527-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..74fb901d350771d0c879e7bc5e4aa8f722731b0f --- /dev/null +++ b/Code/Multiview/Results/20160823-101527-CMultiV-Mumbo-RGB_HOG_SIFT-MultiOmic-LOG.log @@ -0,0 +1,11 @@ +2016-08-23 10:15:27,507 INFO: ### Main Programm for Multiview Classification +2016-08-23 10:15:27,509 INFO: ### Classification - Database : MultiOmic ; Views : RGB, HOG, SIFT ; Algorithm : Mumbo ; Cores : 1 +2016-08-23 10:15:27,510 INFO: Start: Read CSV Database Files for MultiOmic +2016-08-23 10:15:27,517 DEBUG: Start: Getting Methylation Data +2016-08-23 10:15:39,849 DEBUG: Done: Getting Methylation Data +2016-08-23 10:15:39,853 DEBUG: Start: Getting MiRNA Data +2016-08-23 10:15:40,334 DEBUG: Done: Getting MiRNA Data +2016-08-23 10:15:40,335 DEBUG: Start: Getting RNASeq Data +2016-08-23 10:16:20,802 DEBUG: Done: Getting RNASeq Data +2016-08-23 10:16:20,841 DEBUG: Start: Getting Clinical Data +2016-08-23 10:16:20,991 DEBUG: Done: Getting Clinical Data diff --git a/Code/Multiview/run.py b/Code/Multiview/run.py index 7307756a31457afef17fa71dca9d4c971f0c2606..3c60436dbb6dcad9e53111d2fb6af820873f767f 100644 --- a/Code/Multiview/run.py +++ b/Code/Multiview/run.py @@ -1,6 +1,6 @@ # coding=utf-8 import os -os.system('python ExecMultiview.py -log --name MultiOmic --type .hdf5 --views Methyl:MiRNA:RNASEQ:Clinical --pathF /home/bbauvin/Documents/Data/Data_multi_omics/ --CL_split 0.7 --CL_nbFolds 2 --CL_nb_class 2 --CL_classes Positive:Negative --CL_type Fusion --CL_cores 4 --FU_type EarlyFusion --FU_method WeightedLinear') +os.system('python ExecMultiview.py -log --name ModifiedMultiOmic --type .csv --views Methyl:MiRNA:RNASEQ:Clinical --pathF /home/bbauvin/Documents/Data/Data_multi_omics/ --CL_split 0.7 --CL_nbFolds 2 --CL_nb_class 2 --CL_classes Positive:Negative --CL_type Fusion --CL_cores 4 --FU_type EarlyFusion --FU_method WeightedLinear') # /donnees/pj_bdd_bbauvin/Data_multi_omics/ # # /home/bbauvin/Documents/Data/Data_multi_omics/ diff --git a/Code/Results/20160823-105758-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/Results/20160823-105758-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..6cc1f43c53701ec3f0d4b17dd2ccd8f283b154f7 --- /dev/null +++ b/Code/Results/20160823-105758-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,661 @@ +2016-08-23 10:57:59,005 INFO: Begginging +2016-08-23 10:57:59,439 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 10:57:59,439 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-23 10:57:59,439 DEBUG: Start: Determine Train/Test split +2016-08-23 10:57:59,465 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-23 10:57:59,465 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-23 10:57:59,465 DEBUG: Done: Determine Train/Test split +2016-08-23 10:57:59,465 DEBUG: Start: Classification +2016-08-23 10:58:06,426 DEBUG: Info: Time for Classification: 6.67265105247[s] +2016-08-23 10:58:06,426 DEBUG: Done: Classification +2016-08-23 10:58:06,451 DEBUG: Start: Statistic Results +2016-08-23 10:58:06,451 DEBUG: Info: Classification report: +2016-08-23 10:58:06,460 DEBUG: + precision recall f1-score support + + Non 1.00 0.80 0.89 25 + Oui 0.67 1.00 0.80 10 + +avg / total 0.90 0.86 0.86 35 + +2016-08-23 10:58:06,462 DEBUG: Info: Statistics: +2016-08-23 10:58:06,493 DEBUG: + Statistic Values +0 Accuracy score on test 0.857142857143 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.844444 +5 Mean of F1-Score of top 20 classes by F1-Score 0.844444 +6 Mean of F1-Score of top 30 classes by F1-Score 0.844444 +2016-08-23 10:58:06,493 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 10:58:08,420 DEBUG: Done: Statistic Results +2016-08-23 10:58:08,420 DEBUG: Start: Plot Result +2016-08-23 10:58:08,640 DEBUG: Done: Plot Result +2016-08-23 10:58:08,652 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 10:58:08,652 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN +2016-08-23 10:58:08,652 DEBUG: Start: Determine Train/Test split +2016-08-23 10:58:08,665 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-23 10:58:08,665 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-23 10:58:08,665 DEBUG: Done: Determine Train/Test split +2016-08-23 10:58:08,665 DEBUG: Start: Classification +2016-08-23 10:58:18,001 DEBUG: Info: Time for Classification: 9.3463408947[s] +2016-08-23 10:58:18,002 DEBUG: Done: Classification +2016-08-23 10:58:18,484 DEBUG: Start: Statistic Results +2016-08-23 10:58:18,484 DEBUG: Info: Classification report: +2016-08-23 10:58:18,485 DEBUG: + precision recall f1-score support + + Non 0.89 0.93 0.91 27 + Oui 0.71 0.62 0.67 8 + +avg / total 0.85 0.86 0.85 35 + +2016-08-23 10:58:18,487 DEBUG: Info: Statistics: +2016-08-23 10:58:18,494 DEBUG: + Statistic Values +0 Accuracy score on test 0.857142857143 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.787879 +5 Mean of F1-Score of top 20 classes by F1-Score 0.787879 +6 Mean of F1-Score of top 30 classes by F1-Score 0.787879 +2016-08-23 10:58:18,494 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 10:58:18,798 DEBUG: Done: Statistic Results +2016-08-23 10:58:18,799 DEBUG: Start: Plot Result +2016-08-23 10:58:19,485 DEBUG: Done: Plot Result +2016-08-23 10:58:19,494 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 10:58:19,494 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest +2016-08-23 10:58:19,494 DEBUG: Start: Determine Train/Test split +2016-08-23 10:58:19,506 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-23 10:58:19,507 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-23 10:58:19,507 DEBUG: Done: Determine Train/Test split +2016-08-23 10:58:19,507 DEBUG: Start: Classification +2016-08-23 10:58:26,047 DEBUG: Info: Time for Classification: 6.5495569706[s] +2016-08-23 10:58:26,047 DEBUG: Done: Classification +2016-08-23 10:58:26,055 DEBUG: Start: Statistic Results +2016-08-23 10:58:26,056 DEBUG: Info: Classification report: +2016-08-23 10:58:26,056 DEBUG: + precision recall f1-score support + + Non 0.93 0.93 0.93 27 + Oui 0.75 0.75 0.75 8 + +avg / total 0.89 0.89 0.89 35 + +2016-08-23 10:58:26,058 DEBUG: Info: Statistics: +2016-08-23 10:58:26,066 DEBUG: + Statistic Values +0 Accuracy score on test 0.885714285714 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.837963 +5 Mean of F1-Score of top 20 classes by F1-Score 0.837963 +6 Mean of F1-Score of top 30 classes by F1-Score 0.837963 +2016-08-23 10:58:26,066 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 10:58:26,354 DEBUG: Done: Statistic Results +2016-08-23 10:58:26,354 DEBUG: Start: Plot Result +2016-08-23 10:58:26,569 DEBUG: Done: Plot Result +2016-08-23 10:58:26,578 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 10:58:26,578 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD +2016-08-23 10:58:26,578 DEBUG: Start: Determine Train/Test split +2016-08-23 10:58:26,591 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-23 10:58:26,591 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-23 10:58:26,591 DEBUG: Done: Determine Train/Test split +2016-08-23 10:58:26,591 DEBUG: Start: Classification +2016-08-23 10:58:27,979 DEBUG: Info: Time for Classification: 1.39624905586[s] +2016-08-23 10:58:27,979 DEBUG: Done: Classification +2016-08-23 10:58:27,984 DEBUG: Start: Statistic Results +2016-08-23 10:58:27,984 DEBUG: Info: Classification report: +2016-08-23 10:58:27,985 DEBUG: + precision recall f1-score support + + Non 0.92 0.85 0.88 27 + Oui 0.60 0.75 0.67 8 + +avg / total 0.85 0.83 0.83 35 + +2016-08-23 10:58:27,988 DEBUG: Info: Statistics: +2016-08-23 10:58:27,997 DEBUG: + Statistic Values +0 Accuracy score on test 0.828571428571 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.775641 +5 Mean of F1-Score of top 20 classes by F1-Score 0.775641 +6 Mean of F1-Score of top 30 classes by F1-Score 0.775641 +2016-08-23 10:58:27,997 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 10:58:28,309 DEBUG: Done: Statistic Results +2016-08-23 10:58:28,309 DEBUG: Start: Plot Result +2016-08-23 10:58:28,550 DEBUG: Done: Plot Result +2016-08-23 10:58:28,559 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 10:58:28,559 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVC +2016-08-23 10:58:28,559 DEBUG: Start: Determine Train/Test split +2016-08-23 10:58:28,571 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-23 10:58:28,571 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-23 10:58:28,571 DEBUG: Done: Determine Train/Test split +2016-08-23 10:58:28,571 DEBUG: Start: Classification +2016-08-23 10:58:36,064 DEBUG: Info: Time for Classification: 7.50162100792[s] +2016-08-23 10:58:36,064 DEBUG: Done: Classification +2016-08-23 10:58:36,204 DEBUG: Start: Statistic Results +2016-08-23 10:58:36,205 DEBUG: Info: Classification report: +2016-08-23 10:58:36,205 DEBUG: + precision recall f1-score support + + Non 0.96 0.87 0.91 30 + Oui 0.50 0.80 0.62 5 + +avg / total 0.90 0.86 0.87 35 + +2016-08-23 10:58:36,207 DEBUG: Info: Statistics: +2016-08-23 10:58:36,215 DEBUG: + Statistic Values +0 Accuracy score on test 0.857142857143 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.763833 +5 Mean of F1-Score of top 20 classes by F1-Score 0.763833 +6 Mean of F1-Score of top 30 classes by F1-Score 0.763833 +2016-08-23 10:58:36,215 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 10:58:36,505 DEBUG: Done: Statistic Results +2016-08-23 10:58:36,505 DEBUG: Start: Plot Result +2016-08-23 10:58:36,847 DEBUG: Done: Plot Result +2016-08-23 10:58:36,880 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 10:58:36,880 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-23 10:58:36,881 DEBUG: Start: Determine Train/Test split +2016-08-23 10:58:36,881 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-23 10:58:36,881 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-23 10:58:36,881 DEBUG: Done: Determine Train/Test split +2016-08-23 10:58:36,882 DEBUG: Start: Classification +2016-08-23 10:58:37,080 DEBUG: Info: Time for Classification: 0.196507930756[s] +2016-08-23 10:58:37,080 DEBUG: Done: Classification +2016-08-23 10:58:37,081 DEBUG: Start: Statistic Results +2016-08-23 10:58:37,082 DEBUG: Info: Classification report: +2016-08-23 10:58:37,083 DEBUG: + precision recall f1-score support + + Non 0.88 0.88 0.88 26 + Oui 0.67 0.67 0.67 9 + +avg / total 0.83 0.83 0.83 35 + +2016-08-23 10:58:37,084 DEBUG: Info: Statistics: +2016-08-23 10:58:37,091 DEBUG: + Statistic Values +0 Accuracy score on test 0.828571428571 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.775641 +5 Mean of F1-Score of top 20 classes by F1-Score 0.775641 +6 Mean of F1-Score of top 30 classes by F1-Score 0.775641 +2016-08-23 10:58:37,092 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 10:58:37,376 DEBUG: Done: Statistic Results +2016-08-23 10:58:37,376 DEBUG: Start: Plot Result +2016-08-23 10:58:37,582 DEBUG: Done: Plot Result +2016-08-23 10:58:37,583 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 10:58:37,584 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN +2016-08-23 10:58:37,584 DEBUG: Start: Determine Train/Test split +2016-08-23 10:58:37,584 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-23 10:58:37,585 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-23 10:58:37,585 DEBUG: Done: Determine Train/Test split +2016-08-23 10:58:37,585 DEBUG: Start: Classification +2016-08-23 10:58:37,903 DEBUG: Info: Time for Classification: 0.316462993622[s] +2016-08-23 10:58:37,903 DEBUG: Done: Classification +2016-08-23 10:58:37,919 DEBUG: Start: Statistic Results +2016-08-23 10:58:37,920 DEBUG: Info: Classification report: +2016-08-23 10:58:37,921 DEBUG: + precision recall f1-score support + + Non 0.84 0.93 0.88 28 + Oui 0.50 0.29 0.36 7 + +avg / total 0.77 0.80 0.78 35 + +2016-08-23 10:58:37,922 DEBUG: Info: Statistics: +2016-08-23 10:58:37,929 DEBUG: + Statistic Values +0 Accuracy score on test 0.8 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.622496 +5 Mean of F1-Score of top 20 classes by F1-Score 0.622496 +6 Mean of F1-Score of top 30 classes by F1-Score 0.622496 +2016-08-23 10:58:37,929 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 10:58:38,209 DEBUG: Done: Statistic Results +2016-08-23 10:58:38,209 DEBUG: Start: Plot Result +2016-08-23 10:58:38,432 DEBUG: Done: Plot Result +2016-08-23 10:58:38,433 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 10:58:38,433 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest +2016-08-23 10:58:38,433 DEBUG: Start: Determine Train/Test split +2016-08-23 10:58:38,434 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-23 10:58:38,434 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-23 10:58:38,434 DEBUG: Done: Determine Train/Test split +2016-08-23 10:58:38,434 DEBUG: Start: Classification +2016-08-23 10:58:41,426 DEBUG: Info: Time for Classification: 2.98975014687[s] +2016-08-23 10:58:41,426 DEBUG: Done: Classification +2016-08-23 10:58:41,443 DEBUG: Start: Statistic Results +2016-08-23 10:58:41,443 DEBUG: Info: Classification report: +2016-08-23 10:58:41,444 DEBUG: + precision recall f1-score support + + Non 0.92 0.92 0.92 24 + Oui 0.82 0.82 0.82 11 + +avg / total 0.89 0.89 0.89 35 + +2016-08-23 10:58:41,446 DEBUG: Info: Statistics: +2016-08-23 10:58:41,453 DEBUG: + Statistic Values +0 Accuracy score on test 0.885714285714 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.867424 +5 Mean of F1-Score of top 20 classes by F1-Score 0.867424 +6 Mean of F1-Score of top 30 classes by F1-Score 0.867424 +2016-08-23 10:58:41,453 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 10:58:41,744 DEBUG: Done: Statistic Results +2016-08-23 10:58:41,744 DEBUG: Start: Plot Result +2016-08-23 10:58:41,973 DEBUG: Done: Plot Result +2016-08-23 10:58:41,974 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 10:58:41,974 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD +2016-08-23 10:58:41,974 DEBUG: Start: Determine Train/Test split +2016-08-23 10:58:41,975 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-23 10:58:41,975 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-23 10:58:41,975 DEBUG: Done: Determine Train/Test split +2016-08-23 10:58:41,975 DEBUG: Start: Classification +2016-08-23 10:58:42,070 DEBUG: Info: Time for Classification: 0.0909140110016[s] +2016-08-23 10:58:42,070 DEBUG: Done: Classification +2016-08-23 10:58:42,072 DEBUG: Start: Statistic Results +2016-08-23 10:58:42,072 DEBUG: Info: Classification report: +2016-08-23 10:58:42,074 DEBUG: + precision recall f1-score support + + Non 0.88 0.84 0.86 25 + Oui 0.64 0.70 0.67 10 + +avg / total 0.81 0.80 0.80 35 + +2016-08-23 10:58:42,076 DEBUG: Info: Statistics: +2016-08-23 10:58:42,086 DEBUG: + Statistic Values +0 Accuracy score on test 0.8 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.761905 +5 Mean of F1-Score of top 20 classes by F1-Score 0.761905 +6 Mean of F1-Score of top 30 classes by F1-Score 0.761905 +2016-08-23 10:58:42,087 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 10:58:42,421 DEBUG: Done: Statistic Results +2016-08-23 10:58:42,421 DEBUG: Start: Plot Result +2016-08-23 10:58:42,694 DEBUG: Done: Plot Result +2016-08-23 10:58:42,695 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 10:58:42,695 DEBUG: ### Classification - Database:MultiOmic Feature:RNASeq train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVC +2016-08-23 10:58:42,695 DEBUG: Start: Determine Train/Test split +2016-08-23 10:58:42,696 DEBUG: Info: Shape X_train:(312, 1046), Length of y_train:312 +2016-08-23 10:58:42,696 DEBUG: Info: Shape X_test:(35, 1046), Length of y_test:35 +2016-08-23 10:58:42,696 DEBUG: Done: Determine Train/Test split +2016-08-23 10:58:42,696 DEBUG: Start: Classification +2016-08-23 10:58:52,919 DEBUG: Info: Time for Classification: 10.2208080292[s] +2016-08-23 10:58:52,919 DEBUG: Done: Classification +2016-08-23 10:58:52,924 DEBUG: Start: Statistic Results +2016-08-23 10:58:52,924 DEBUG: Info: Classification report: +2016-08-23 10:58:52,925 DEBUG: + precision recall f1-score support + + Non 0.92 0.89 0.91 27 + Oui 0.67 0.75 0.71 8 + +avg / total 0.86 0.86 0.86 35 + +2016-08-23 10:58:52,927 DEBUG: Info: Statistics: +2016-08-23 10:58:52,934 DEBUG: + Statistic Values +0 Accuracy score on test 0.857142857143 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.805771 +5 Mean of F1-Score of top 20 classes by F1-Score 0.805771 +6 Mean of F1-Score of top 30 classes by F1-Score 0.805771 +2016-08-23 10:58:52,934 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 10:58:53,223 DEBUG: Done: Statistic Results +2016-08-23 10:58:53,223 DEBUG: Start: Plot Result +2016-08-23 10:58:53,432 DEBUG: Done: Plot Result +2016-08-23 10:58:53,462 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 10:58:53,462 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-23 10:58:53,463 DEBUG: Start: Determine Train/Test split +2016-08-23 10:58:53,524 DEBUG: Info: Shape X_train:(312, 73599), Length of y_train:312 +2016-08-23 10:58:53,524 DEBUG: Info: Shape X_test:(35, 73599), Length of y_test:35 +2016-08-23 10:58:53,524 DEBUG: Done: Determine Train/Test split +2016-08-23 10:58:53,524 DEBUG: Start: Classification +2016-08-23 10:59:12,961 DEBUG: Info: Time for Classification: 19.4953379631[s] +2016-08-23 10:59:12,961 DEBUG: Done: Classification +2016-08-23 10:59:12,964 DEBUG: Start: Statistic Results +2016-08-23 10:59:12,964 DEBUG: Info: Classification report: +2016-08-23 10:59:12,965 DEBUG: + precision recall f1-score support + + Non 0.74 0.65 0.69 26 + Oui 0.25 0.33 0.29 9 + +avg / total 0.61 0.57 0.59 35 + +2016-08-23 10:59:12,967 DEBUG: Info: Statistics: +2016-08-23 10:59:12,974 DEBUG: + Statistic Values +0 Accuracy score on test 0.571428571429 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.489796 +5 Mean of F1-Score of top 20 classes by F1-Score 0.489796 +6 Mean of F1-Score of top 30 classes by F1-Score 0.489796 +2016-08-23 10:59:12,974 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 10:59:13,251 DEBUG: Done: Statistic Results +2016-08-23 10:59:13,251 DEBUG: Start: Plot Result +2016-08-23 10:59:13,458 DEBUG: Done: Plot Result +2016-08-23 10:59:13,487 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 10:59:13,487 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN +2016-08-23 10:59:13,487 DEBUG: Start: Determine Train/Test split +2016-08-23 10:59:13,523 DEBUG: Info: Shape X_train:(312, 73599), Length of y_train:312 +2016-08-23 10:59:13,523 DEBUG: Info: Shape X_test:(35, 73599), Length of y_test:35 +2016-08-23 10:59:13,523 DEBUG: Done: Determine Train/Test split +2016-08-23 10:59:13,524 DEBUG: Start: Classification +2016-08-23 10:59:40,117 DEBUG: Info: Time for Classification: 26.6264278889[s] +2016-08-23 10:59:40,117 DEBUG: Done: Classification +2016-08-23 10:59:41,459 DEBUG: Start: Statistic Results +2016-08-23 10:59:41,459 DEBUG: Info: Classification report: +2016-08-23 10:59:41,460 DEBUG: + precision recall f1-score support + + Non 0.67 0.96 0.79 23 + Oui 0.50 0.08 0.14 12 + +avg / total 0.61 0.66 0.57 35 + +2016-08-23 10:59:41,462 DEBUG: Info: Statistics: +2016-08-23 10:59:41,469 DEBUG: + Statistic Values +0 Accuracy score on test 0.657142857143 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.464286 +5 Mean of F1-Score of top 20 classes by F1-Score 0.464286 +6 Mean of F1-Score of top 30 classes by F1-Score 0.464286 +2016-08-23 10:59:41,469 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 10:59:41,749 DEBUG: Done: Statistic Results +2016-08-23 10:59:41,749 DEBUG: Start: Plot Result +2016-08-23 10:59:43,291 DEBUG: Done: Plot Result +2016-08-23 10:59:43,321 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 10:59:43,321 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest +2016-08-23 10:59:43,321 DEBUG: Start: Determine Train/Test split +2016-08-23 10:59:43,357 DEBUG: Info: Shape X_train:(312, 73599), Length of y_train:312 +2016-08-23 10:59:43,357 DEBUG: Info: Shape X_test:(35, 73599), Length of y_test:35 +2016-08-23 10:59:43,358 DEBUG: Done: Determine Train/Test split +2016-08-23 10:59:43,358 DEBUG: Start: Classification +2016-08-23 10:59:58,108 DEBUG: Info: Time for Classification: 14.7840790749[s] +2016-08-23 10:59:58,108 DEBUG: Done: Classification +2016-08-23 10:59:58,127 DEBUG: Start: Statistic Results +2016-08-23 10:59:58,128 DEBUG: Info: Classification report: +2016-08-23 10:59:58,142 DEBUG: + precision recall f1-score support + + Non 0.63 1.00 0.77 22 + Oui 0.00 0.00 0.00 13 + +avg / total 0.40 0.63 0.49 35 + +2016-08-23 10:59:58,147 DEBUG: Info: Statistics: +2016-08-23 10:59:58,157 DEBUG: + Statistic Values +0 Accuracy score on test 0.628571428571 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0.5 +4 Mean of F1-Score of top 10 classes by F1-Score 0.385965 +5 Mean of F1-Score of top 20 classes by F1-Score 0.385965 +6 Mean of F1-Score of top 30 classes by F1-Score 0.385965 +2016-08-23 10:59:58,157 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 10:59:58,457 DEBUG: Done: Statistic Results +2016-08-23 10:59:58,457 DEBUG: Start: Plot Result +2016-08-23 10:59:58,679 DEBUG: Done: Plot Result +2016-08-23 10:59:58,709 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 10:59:58,709 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD +2016-08-23 10:59:58,709 DEBUG: Start: Determine Train/Test split +2016-08-23 10:59:58,745 DEBUG: Info: Shape X_train:(312, 73599), Length of y_train:312 +2016-08-23 10:59:58,745 DEBUG: Info: Shape X_test:(35, 73599), Length of y_test:35 +2016-08-23 10:59:58,745 DEBUG: Done: Determine Train/Test split +2016-08-23 10:59:58,745 DEBUG: Start: Classification +2016-08-23 11:00:01,208 DEBUG: Info: Time for Classification: 2.49507904053[s] +2016-08-23 11:00:01,208 DEBUG: Done: Classification +2016-08-23 11:00:01,217 DEBUG: Start: Statistic Results +2016-08-23 11:00:01,217 DEBUG: Info: Classification report: +2016-08-23 11:00:01,218 DEBUG: + precision recall f1-score support + + Non 0.69 1.00 0.81 24 + Oui 0.00 0.00 0.00 11 + +avg / total 0.47 0.69 0.56 35 + +2016-08-23 11:00:01,220 DEBUG: Info: Statistics: +2016-08-23 11:00:01,228 DEBUG: + Statistic Values +0 Accuracy score on test 0.685714285714 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0.5 +4 Mean of F1-Score of top 10 classes by F1-Score 0.40678 +5 Mean of F1-Score of top 20 classes by F1-Score 0.40678 +6 Mean of F1-Score of top 30 classes by F1-Score 0.40678 +2016-08-23 11:00:01,228 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 11:00:01,541 DEBUG: Done: Statistic Results +2016-08-23 11:00:01,541 DEBUG: Start: Plot Result +2016-08-23 11:00:01,827 DEBUG: Done: Plot Result +2016-08-23 11:00:01,859 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 11:00:01,859 DEBUG: ### Classification - Database:MultiOmic Feature:Clinic train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVC +2016-08-23 11:00:01,859 DEBUG: Start: Determine Train/Test split +2016-08-23 11:00:01,897 DEBUG: Info: Shape X_train:(312, 73599), Length of y_train:312 +2016-08-23 11:00:01,897 DEBUG: Info: Shape X_test:(35, 73599), Length of y_test:35 +2016-08-23 11:00:01,897 DEBUG: Done: Determine Train/Test split +2016-08-23 11:00:01,897 DEBUG: Start: Classification +2016-08-23 11:00:34,135 DEBUG: Info: Time for Classification: 32.2736110687[s] +2016-08-23 11:00:34,136 DEBUG: Done: Classification +2016-08-23 11:00:34,724 DEBUG: Start: Statistic Results +2016-08-23 11:00:34,724 DEBUG: Info: Classification report: +2016-08-23 11:00:34,725 DEBUG: + precision recall f1-score support + + Non 0.82 0.69 0.75 26 + Oui 0.38 0.56 0.45 9 + +avg / total 0.71 0.66 0.67 35 + +2016-08-23 11:00:34,727 DEBUG: Info: Statistics: +2016-08-23 11:00:34,734 DEBUG: + Statistic Values +0 Accuracy score on test 0.657142857143 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.602273 +5 Mean of F1-Score of top 20 classes by F1-Score 0.602273 +6 Mean of F1-Score of top 30 classes by F1-Score 0.602273 +2016-08-23 11:00:34,734 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 11:00:35,019 DEBUG: Done: Statistic Results +2016-08-23 11:00:35,019 DEBUG: Start: Plot Result +2016-08-23 11:00:35,811 DEBUG: Done: Plot Result +2016-08-23 11:00:35,838 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 11:00:35,838 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-23 11:00:35,838 DEBUG: Start: Determine Train/Test split +2016-08-23 11:00:35,839 DEBUG: Info: Shape X_train:(312, 127), Length of y_train:312 +2016-08-23 11:00:35,839 DEBUG: Info: Shape X_test:(35, 127), Length of y_test:35 +2016-08-23 11:00:35,839 DEBUG: Done: Determine Train/Test split +2016-08-23 11:00:35,839 DEBUG: Start: Classification +2016-08-23 11:00:35,880 DEBUG: Info: Time for Classification: 0.0384650230408[s] +2016-08-23 11:00:35,880 DEBUG: Done: Classification +2016-08-23 11:00:35,881 DEBUG: Start: Statistic Results +2016-08-23 11:00:35,882 DEBUG: Info: Classification report: +2016-08-23 11:00:35,882 DEBUG: + precision recall f1-score support + + Non 0.63 1.00 0.77 22 + Oui 0.00 0.00 0.00 13 + +avg / total 0.40 0.63 0.49 35 + +2016-08-23 11:00:35,884 DEBUG: Info: Statistics: +2016-08-23 11:00:35,891 DEBUG: + Statistic Values +0 Accuracy score on test 0.628571428571 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0.5 +4 Mean of F1-Score of top 10 classes by F1-Score 0.385965 +5 Mean of F1-Score of top 20 classes by F1-Score 0.385965 +6 Mean of F1-Score of top 30 classes by F1-Score 0.385965 +2016-08-23 11:00:35,891 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 11:00:36,167 DEBUG: Done: Statistic Results +2016-08-23 11:00:36,167 DEBUG: Start: Plot Result +2016-08-23 11:00:36,373 DEBUG: Done: Plot Result +2016-08-23 11:00:36,374 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 11:00:36,374 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN +2016-08-23 11:00:36,374 DEBUG: Start: Determine Train/Test split +2016-08-23 11:00:36,375 DEBUG: Info: Shape X_train:(312, 127), Length of y_train:312 +2016-08-23 11:00:36,375 DEBUG: Info: Shape X_test:(35, 127), Length of y_test:35 +2016-08-23 11:00:36,375 DEBUG: Done: Determine Train/Test split +2016-08-23 11:00:36,375 DEBUG: Start: Classification +2016-08-23 11:00:36,442 DEBUG: Info: Time for Classification: 0.0647449493408[s] +2016-08-23 11:00:36,442 DEBUG: Done: Classification +2016-08-23 11:00:36,445 DEBUG: Start: Statistic Results +2016-08-23 11:00:36,445 DEBUG: Info: Classification report: +2016-08-23 11:00:36,446 DEBUG: + precision recall f1-score support + + Non 0.85 0.97 0.91 30 + Oui 0.00 0.00 0.00 5 + +avg / total 0.73 0.83 0.78 35 + +2016-08-23 11:00:36,448 DEBUG: Info: Statistics: +2016-08-23 11:00:36,455 DEBUG: + Statistic Values +0 Accuracy score on test 0.828571428571 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0.5 +4 Mean of F1-Score of top 10 classes by F1-Score 0.453125 +5 Mean of F1-Score of top 20 classes by F1-Score 0.453125 +6 Mean of F1-Score of top 30 classes by F1-Score 0.453125 +2016-08-23 11:00:36,456 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 11:00:36,744 DEBUG: Done: Statistic Results +2016-08-23 11:00:36,744 DEBUG: Start: Plot Result +2016-08-23 11:00:36,951 DEBUG: Done: Plot Result +2016-08-23 11:00:36,952 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 11:00:36,952 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : RandomForest +2016-08-23 11:00:36,952 DEBUG: Start: Determine Train/Test split +2016-08-23 11:00:36,952 DEBUG: Info: Shape X_train:(312, 127), Length of y_train:312 +2016-08-23 11:00:36,952 DEBUG: Info: Shape X_test:(35, 127), Length of y_test:35 +2016-08-23 11:00:36,953 DEBUG: Done: Determine Train/Test split +2016-08-23 11:00:36,953 DEBUG: Start: Classification +2016-08-23 11:00:39,168 DEBUG: Info: Time for Classification: 2.21314096451[s] +2016-08-23 11:00:39,168 DEBUG: Done: Classification +2016-08-23 11:00:39,177 DEBUG: Start: Statistic Results +2016-08-23 11:00:39,177 DEBUG: Info: Classification report: +2016-08-23 11:00:39,178 DEBUG: + precision recall f1-score support + + Non 0.90 1.00 0.95 26 + Oui 1.00 0.67 0.80 9 + +avg / total 0.92 0.91 0.91 35 + +2016-08-23 11:00:39,180 DEBUG: Info: Statistics: +2016-08-23 11:00:39,187 DEBUG: + Statistic Values +0 Accuracy score on test 0.914285714286 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.872727 +5 Mean of F1-Score of top 20 classes by F1-Score 0.872727 +6 Mean of F1-Score of top 30 classes by F1-Score 0.872727 +2016-08-23 11:00:39,187 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 11:00:39,476 DEBUG: Done: Statistic Results +2016-08-23 11:00:39,476 DEBUG: Start: Plot Result +2016-08-23 11:00:39,690 DEBUG: Done: Plot Result +2016-08-23 11:00:39,691 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 11:00:39,691 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SGD +2016-08-23 11:00:39,691 DEBUG: Start: Determine Train/Test split +2016-08-23 11:00:39,691 DEBUG: Info: Shape X_train:(312, 127), Length of y_train:312 +2016-08-23 11:00:39,692 DEBUG: Info: Shape X_test:(35, 127), Length of y_test:35 +2016-08-23 11:00:39,692 DEBUG: Done: Determine Train/Test split +2016-08-23 11:00:39,692 DEBUG: Start: Classification +2016-08-23 11:00:39,757 DEBUG: Info: Time for Classification: 0.0622010231018[s] +2016-08-23 11:00:39,757 DEBUG: Done: Classification +2016-08-23 11:00:39,758 DEBUG: Start: Statistic Results +2016-08-23 11:00:39,759 DEBUG: Info: Classification report: +2016-08-23 11:00:39,759 DEBUG: + precision recall f1-score support + + Non 0.77 1.00 0.87 27 + Oui 0.00 0.00 0.00 8 + +avg / total 0.60 0.77 0.67 35 + +2016-08-23 11:00:39,761 DEBUG: Info: Statistics: +2016-08-23 11:00:39,769 DEBUG: + Statistic Values +0 Accuracy score on test 0.771428571429 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0.5 +4 Mean of F1-Score of top 10 classes by F1-Score 0.435484 +5 Mean of F1-Score of top 20 classes by F1-Score 0.435484 +6 Mean of F1-Score of top 30 classes by F1-Score 0.435484 +2016-08-23 11:00:39,769 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 11:00:40,097 DEBUG: Done: Statistic Results +2016-08-23 11:00:40,097 DEBUG: Start: Plot Result +2016-08-23 11:00:40,305 DEBUG: Done: Plot Result +2016-08-23 11:00:40,306 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 11:00:40,306 DEBUG: ### Classification - Database:MultiOmic Feature:Methyl train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : SVC +2016-08-23 11:00:40,307 DEBUG: Start: Determine Train/Test split +2016-08-23 11:00:40,307 DEBUG: Info: Shape X_train:(312, 127), Length of y_train:312 +2016-08-23 11:00:40,307 DEBUG: Info: Shape X_test:(35, 127), Length of y_test:35 +2016-08-23 11:00:40,307 DEBUG: Done: Determine Train/Test split +2016-08-23 11:00:40,307 DEBUG: Start: Classification +2016-08-23 11:02:01,155 DEBUG: Info: Time for Classification: 80.8456330299[s] +2016-08-23 11:02:01,156 DEBUG: Done: Classification +2016-08-23 11:02:01,158 DEBUG: Start: Statistic Results +2016-08-23 11:02:01,158 DEBUG: Info: Classification report: +2016-08-23 11:02:01,159 DEBUG: + precision recall f1-score support + + Non 0.71 1.00 0.83 20 + Oui 1.00 0.47 0.64 15 + +avg / total 0.84 0.77 0.75 35 + +2016-08-23 11:02:01,161 DEBUG: Info: Statistics: +2016-08-23 11:02:01,168 DEBUG: + Statistic Values +0 Accuracy score on test 0.771428571429 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.734848 +5 Mean of F1-Score of top 20 classes by F1-Score 0.734848 +6 Mean of F1-Score of top 30 classes by F1-Score 0.734848 +2016-08-23 11:02:01,168 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 11:02:01,456 DEBUG: Done: Statistic Results +2016-08-23 11:02:01,456 DEBUG: Start: Plot Result +2016-08-23 11:02:01,662 DEBUG: Done: Plot Result diff --git a/Code/Results/20160823-110509-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/Results/20160823-110509-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..22ce34e83c357a1cd5ff2508c33c11ccaec9eca8 --- /dev/null +++ b/Code/Results/20160823-110509-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,41 @@ +2016-08-23 11:05:09,064 INFO: Begginging +2016-08-23 11:05:09,081 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 11:05:09,081 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : DecisionTree +2016-08-23 11:05:09,081 DEBUG: Start: Determine Train/Test split +2016-08-23 11:05:09,095 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-23 11:05:09,095 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-23 11:05:09,095 DEBUG: Done: Determine Train/Test split +2016-08-23 11:05:09,095 DEBUG: Start: Classification +2016-08-23 11:05:16,229 DEBUG: Info: Time for Classification: 7.14391708374[s] +2016-08-23 11:05:16,229 DEBUG: Done: Classification +2016-08-23 11:05:16,231 DEBUG: Start: Statistic Results +2016-08-23 11:05:16,231 DEBUG: Info: Classification report: +2016-08-23 11:05:16,232 DEBUG: + precision recall f1-score support + + Non 1.00 0.85 0.92 26 + Oui 0.69 1.00 0.82 9 + +avg / total 0.92 0.89 0.89 35 + +2016-08-23 11:05:16,234 DEBUG: Info: Statistics: +2016-08-23 11:05:16,241 DEBUG: + Statistic Values +0 Accuracy score on test 0.885714285714 +1 Top 10 classes by F1-Score [Non, Oui] +2 Worst 10 classes by F1-Score [Oui, Non] +3 Ratio of classes with F1-Score==0 of all classes 0 +4 Mean of F1-Score of top 10 classes by F1-Score 0.867424 +5 Mean of F1-Score of top 20 classes by F1-Score 0.867424 +6 Mean of F1-Score of top 30 classes by F1-Score 0.867424 +2016-08-23 11:05:16,241 DEBUG: Info: Calculate Confusionmatrix +2016-08-23 11:05:16,795 DEBUG: Done: Statistic Results +2016-08-23 11:05:16,795 DEBUG: Start: Plot Result +2016-08-23 11:05:17,004 DEBUG: Done: Plot Result +2016-08-23 11:05:17,014 DEBUG: ### Main Programm for Classification MonoView +2016-08-23 11:05:17,014 DEBUG: ### Classification - Database:MultiOmic Feature:MiRNA_ train_size:0.9, CrossValidation k-folds:2, cores:1, algorithm : KNN +2016-08-23 11:05:17,015 DEBUG: Start: Determine Train/Test split +2016-08-23 11:05:17,028 DEBUG: Info: Shape X_train:(312, 25978), Length of y_train:312 +2016-08-23 11:05:17,028 DEBUG: Info: Shape X_test:(35, 25978), Length of y_test:35 +2016-08-23 11:05:17,029 DEBUG: Done: Determine Train/Test split +2016-08-23 11:05:17,029 DEBUG: Start: Classification diff --git a/Code/Results/20160823-110659-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/Results/20160823-110659-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..2bf73ae2ab968cfbd4912acb1641f0f5010c3e25 --- /dev/null +++ b/Code/Results/20160823-110659-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,3 @@ +2016-08-23 11:06:59,550 INFO: Begginging +2016-08-23 11:06:59,554 INFO: ### Main Programm for Multiview Classification +2016-08-23 11:06:59,555 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1 diff --git a/Code/Results/20160823-110859-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/Results/20160823-110859-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..69aa2366c346f089f1450f3bf488ab929b85a9bd --- /dev/null +++ b/Code/Results/20160823-110859-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,9 @@ +2016-08-23 11:08:59,084 INFO: Begginging +2016-08-23 11:08:59,088 INFO: ### Main Programm for Multiview Classification +2016-08-23 11:08:59,089 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1 +2016-08-23 11:08:59,089 INFO: Info: Shape of Methyl :(347, 25978) +2016-08-23 11:08:59,089 INFO: Info: Shape of MiRNA_ :(347, 1046) +2016-08-23 11:08:59,090 INFO: Info: Shape of RANSeq :(347, 73599) +2016-08-23 11:08:59,090 INFO: Info: Shape of Clinic :(347, 127) +2016-08-23 11:08:59,090 INFO: Done: Read Database Files +2016-08-23 11:08:59,090 INFO: Start: Determine validation split for ratio 0.9 diff --git a/Code/Results/20160823-111036-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/Results/20160823-111036-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..8ca5253ced3d2c47fe838556497b79c2b4ea98be --- /dev/null +++ b/Code/Results/20160823-111036-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,11 @@ +2016-08-23 11:10:36,299 INFO: Begginging +2016-08-23 11:10:36,303 INFO: ### Main Programm for Multiview Classification +2016-08-23 11:10:36,303 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1 +2016-08-23 11:10:36,303 INFO: Info: Shape of Methyl :(347, 25978) +2016-08-23 11:10:36,304 INFO: Info: Shape of MiRNA_ :(347, 1046) +2016-08-23 11:10:36,304 INFO: Info: Shape of RANSeq :(347, 73599) +2016-08-23 11:10:36,304 INFO: Info: Shape of Clinic :(347, 127) +2016-08-23 11:10:36,305 INFO: Done: Read Database Files +2016-08-23 11:10:36,305 INFO: Start: Determine validation split for ratio 0.9 +2016-08-23 11:10:36,307 INFO: Done: Determine validation split +2016-08-23 11:10:36,307 INFO: Start: Determine 2 folds diff --git a/Code/Results/20160823-111124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log b/Code/Results/20160823-111124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log new file mode 100644 index 0000000000000000000000000000000000000000..a3bfd6e3a1d63bdf6590e54e99b1831f06712329 --- /dev/null +++ b/Code/Results/20160823-111124-CMultiV-Benchmark-Methyl_MiRNA__RNASeq_Clinic-MultiOmic-LOG.log @@ -0,0 +1,17 @@ +2016-08-23 11:11:24,815 INFO: Begginging +2016-08-23 11:11:24,818 INFO: ### Main Programm for Multiview Classification +2016-08-23 11:11:24,818 INFO: ### Classification - Database : MultiOmic ; Views : Methyl, MiRNA_, RNASeq, Clinic ; Algorithm : Fusion ; Cores : 1 +2016-08-23 11:11:24,819 INFO: Info: Shape of Methyl :(347, 25978) +2016-08-23 11:11:24,819 INFO: Info: Shape of MiRNA_ :(347, 1046) +2016-08-23 11:11:24,820 INFO: Info: Shape of RANSeq :(347, 73599) +2016-08-23 11:11:24,820 INFO: Info: Shape of Clinic :(347, 127) +2016-08-23 11:11:24,820 INFO: Done: Read Database Files +2016-08-23 11:11:24,820 INFO: Start: Determine validation split for ratio 0.9 +2016-08-23 11:11:24,823 INFO: Done: Determine validation split +2016-08-23 11:11:24,823 INFO: Start: Determine 2 folds +2016-08-23 11:11:24,849 INFO: Info: Length of Learning Sets: 157 +2016-08-23 11:11:24,849 INFO: Info: Length of Testing Sets: 156 +2016-08-23 11:11:24,849 INFO: Info: Length of Validation Set: 34 +2016-08-23 11:11:24,849 INFO: Done: Determine folds +2016-08-23 11:11:24,849 INFO: Start: Learning with Fusion and 2 folds +2016-08-23 11:11:24,849 INFO: Start: Gridsearching best settings for monoview classifiers