diff --git a/config_files/config_test.yml b/config_files/config_test.yml index 104cb0a091c3a231600c7961cafcea2e79d4b13a..f54013c707f38890fdad1e077dc5834b7ac51d83 100644 --- a/config_files/config_test.yml +++ b/config_files/config_test.yml @@ -1,11 +1,11 @@ # The base configuration of the benchmark Base : log: True - name: ["plausible"] + name: ["outliers_dset"] label: "_" type: ".hdf5" views: - pathf: "../data/" + pathf: "/home/baptiste/Documents/Datasets/Generated/outliers_dset/" nice: 0 random_state: 42 nb_cores: 1 @@ -18,18 +18,18 @@ Base : # All the classification-realted configuration options Classification: multiclass_method: "oneVersusOne" - split: 0.4 + split: 0.2 nb_folds: 2 nb_class: 2 classes: - type: ["monoview"] - algos_monoview: ["adaboost",] - algos_multiview: ["svm_jumbo_fusion"] - stats_iter: 2 + type: ["monoview", "multiview"] + algos_monoview: ["decision_tree", "adaboost", "svm_linear", "random_forest"] + algos_multiview: ["weighted_linear_early_fusion", "difficulty_fusion", "double_fault_fusion"] + stats_iter: 30 metrics: ["accuracy_score", "f1_score"] - metric_princ: "f1_score" + metric_princ: "accuracy_score" hps_type: "randomized_search-equiv" - hps_iter: 1 + hps_iter: 5 ##################################### diff --git a/multiview_platform/mono_multi_view_classifiers/result_analysis.py b/multiview_platform/mono_multi_view_classifiers/result_analysis.py index e33f1a72d0338ef8bb3fb08816cb1cd9536c9764..f529f1af4fa4eeb15b7e54de9fed451e67d0c662 100644 --- a/multiview_platform/mono_multi_view_classifiers/result_analysis.py +++ b/multiview_platform/mono_multi_view_classifiers/result_analysis.py @@ -7,6 +7,7 @@ import yaml import matplotlib as mpl from matplotlib.patches import Patch + # Import third party modules import matplotlib.pyplot as plt import numpy as np @@ -213,7 +214,7 @@ def plot_2d(data, classifiers_names, nbClassifiers, nbExamples, plt.close() ### The following part is used to generate an interactive graph. if use_plotly: - label_index_list = [np.where(labels==i)[0] for i in np.unique(labels)] + label_index_list = [np.arange(len(labels))] #[np.where(labels==i)[0] for i in np.unique(labels)] hover_text = [[example_ids[i] + " failed "+ str(stats_iter-data[i,j])+" time(s)" for j in range(data.shape[1])] for i in range(data.shape[0]) ] @@ -732,7 +733,6 @@ def analyze_biclass(results, benchmark_argument_dictionaries, stats_iter, metric metrics_scores = get_metrics_scores_biclass(metrics, result) example_errors = get_example_errors_biclass(arguments["labels"], result) feature_importances = get_feature_importances(result) - print(feature_importances) directory = arguments["directory"] database_name = arguments["args"]["Base"]["name"] diff --git a/multiview_platform/tests/test_ResultAnalysis.py b/multiview_platform/tests/test_ResultAnalysis.py index dff6a23f874ca1eba41271261e4557626654af82..6fb4b0d799bef1b2638db50fc1188607a47d7de9 100644 --- a/multiview_platform/tests/test_ResultAnalysis.py +++ b/multiview_platform/tests/test_ResultAnalysis.py @@ -182,7 +182,7 @@ class Test_gen_error_data(unittest.TestCase): class Test_format_previous_results(unittest.TestCase): def test_simple(self): - biclass_results = {"01":{"metrics_scores":[], "example_errors":[], "feature_importances":[]}} + biclass_results = {"01":{"metrics_scores":[], "example_errors":[], "feature_importances":[], "labels":[]}} random_state = np.random.RandomState(42) # Gen metrics data