diff --git a/config_files/config_test.yml b/config_files/config_test.yml index 50c2791fa1f5a0805a3c8f0702aa622cc8a36082..f2cfe3404c47d40c51398a2090a6f54d7d35780d 100644 --- a/config_files/config_test.yml +++ b/config_files/config_test.yml @@ -1,5 +1,5 @@ # The base configuration of the benchmark -log: True +log: False name: ["plausible",] label: "_" file_type: ".hdf5" @@ -19,15 +19,15 @@ track_tracebacks: False multiclass_method: "oneVersusOne" split: 0.49 nb_folds: 2 -nb_class: 3 +nb_class: 2 classes: -type: ["multiview",] +type: ["multiview","monoview"] algos_monoview: ["decision_tree" ] -algos_multiview: ["svm_jumbo_fusion",] +algos_multiview: ["weighted_linear_early_fusion",] stats_iter: 2 metrics: ["accuracy_score", "f1_score"] -metric_princ: "f1_score" -hps_type: "randomized_search" +metric_princ: "accuracy_score" +hps_type: "None" hps_iter: 1 diff --git a/multiview_platform/mono_multi_view_classifiers/utils/dataset.py b/multiview_platform/mono_multi_view_classifiers/utils/dataset.py index c75fa0fccb637e394172befd438c80daa28e3f6b..2e1ec8fe92164370534dcc0cb0f95caa5532de51 100644 --- a/multiview_platform/mono_multi_view_classifiers/utils/dataset.py +++ b/multiview_platform/mono_multi_view_classifiers/utils/dataset.py @@ -195,9 +195,9 @@ class RAMDataset(Dataset): if type(example_indices) is int: return self.views[view_index][example_indices, :] else: - example_indices = np.array(example_indices) - sorted_indices = np.argsort(example_indices) - example_indices = example_indices[sorted_indices] + example_indices = np.asarray(example_indices) + # sorted_indices = np.argsort(example_indices) + # example_indices = example_indices[sorted_indices] if not self.are_sparse[view_index]: return self.views[view_index][ example_indices, :] @@ -452,12 +452,11 @@ class HDF5Dataset(Dataset): return self.dataset["View" + str(view_index)][example_indices, :] else: example_indices = np.array(example_indices) - sorted_indices = np.argsort(example_indices) - example_indices = example_indices[sorted_indices] + # sorted_indices = np.argsort(example_indices) + # example_indices = example_indices[sorted_indices] if not self.dataset["View" + str(view_index)].attrs["sparse"]: - return self.dataset["View" + str(view_index)][()][example_indices, :][ - np.argsort(sorted_indices), :] + return self.dataset["View" + str(view_index)][()][example_indices, :]#[np.argsort(sorted_indices), :] else: sparse_mat = sparse.csr_matrix( (self.dataset["View" + str(view_index)]["data"][()],