diff --git a/config_files/config_test.yml b/config_files/config_test.yml index 64cb127307de84cc7b746065b69b40061a39dad9..0a83c99239acbf7070a742a076a4a0e946151526 100644 --- a/config_files/config_test.yml +++ b/config_files/config_test.yml @@ -13,7 +13,7 @@ debug: True add_noise: False noise_std: 0.0 res_dir: "../results/" -track_tracebacks: False +track_tracebacks: True # All the classification-realted configuration options multiclass_method: "oneVersusOne" diff --git a/multiview_platform/mono_multi_view_classifiers/utils/hyper_parameter_search.py b/multiview_platform/mono_multi_view_classifiers/utils/hyper_parameter_search.py index 8132b9ab4525eb58fe335d381277dd1fe0139d68..734092cd1d07175bc72d663bdb47e54eb3e2727a 100644 --- a/multiview_platform/mono_multi_view_classifiers/utils/hyper_parameter_search.py +++ b/multiview_platform/mono_multi_view_classifiers/utils/hyper_parameter_search.py @@ -65,7 +65,6 @@ class HPSearch: self.cv_results_["mean_test_score"] = [] self.cv_results_["params"] = [] n_failed = 0 - self.tracebacks = [] self.tracebacks_params = [] for candidate_param_idx, candidate_param in enumerate(self.candidate_params): test_scores = np.zeros(n_splits) + 1000 @@ -164,6 +163,7 @@ class Random(RandomizedSearchCV, HPSearch): self.view_indices = view_indices self.equivalent_draws = equivalent_draws self.track_tracebacks = track_tracebacks + self.tracebacks=[] def get_param_distribs(self, estimator): if isinstance(estimator, MultiClassWrapper): @@ -208,6 +208,7 @@ class Grid(GridSearchCV, HPSearch): self.available_indices = learning_indices self.view_indices = view_indices self.track_tracebacks = track_tracebacks + self.tracebacks = [] def fit(self, X, y=None, groups=None, **fit_params): if self.framework == "monoview":