diff --git a/config_files/config_test.yml b/config_files/config_test.yml index 478e0e08c5f343e9a929d8a3f9c5c0501ce73041..36db7863899c2b2debec4cbff8b56e849273d084 100644 --- a/config_files/config_test.yml +++ b/config_files/config_test.yml @@ -7,7 +7,7 @@ views: pathf: "examples/data/" nice: 0 random_state: 42 -nb_cores: 1 +nb_cores: 4 full: False debug: True add_noise: False @@ -22,7 +22,7 @@ nb_folds: 2 nb_class: 3 classes: type: [ "monoview"] -algos_monoview: ["decision_tree", ] +algos_monoview: ["decision_tree", "adaboost" ] algos_multiview: ["weighted_linear_late_fusion"] stats_iter: 3 metrics: @@ -31,7 +31,7 @@ metrics: metric_princ: "accuracy_score" hps_type: "Random" hps_args: - n_iter: 4 + n_iter: 10 equivalent_draws: False decision_tree: max_depth: diff --git a/summit/multiview_platform/exec_classif.py b/summit/multiview_platform/exec_classif.py index 6c75194aaf2c10a58cfdd38ecd9e2fa8e071b27b..0b92a6f10fbe834b0646489c56f8b53b5108bcfc 100644 --- a/summit/multiview_platform/exec_classif.py +++ b/summit/multiview_platform/exec_classif.py @@ -548,7 +548,7 @@ def exec_one_benchmark_mono_core(dataset_var=None, labels_dictionary=None, argument_dictionaries=None, benchmark=None, views=None, views_indices=None, flag=None, labels=None, - track_tracebacks=False): # pragma: no cover + track_tracebacks=False, n_jobs=1): # pragma: no cover results_monoview, labels_names = benchmark_init(directory, classification_indices, labels, @@ -564,7 +564,7 @@ def exec_one_benchmark_mono_core(dataset_var=None, labels_dictionary=None, results_monoview += [ exec_monoview(directory, X, Y, args["name"], labels_names, classification_indices, k_folds, - 1, args["file_type"], args["pathf"], random_state, + n_jobs, args["file_type"], args["pathf"], random_state, hyper_param_search=hyper_param_search, metrics=metrics, **arguments)] @@ -660,26 +660,10 @@ def exec_benchmark(nb_cores, stats_iter, """ logging.info("Start:\t Executing all the needed benchmarks") results = [] - # if nb_cores > 1: - # if stats_iter > 1 or nb_multiclass > 1: - # nb_exps_to_do = len(benchmark_arguments_dictionaries) - # nb_multicore_to_do = range(int(math.ceil(float(nb_exps_to_do) / nb_cores))) - # for step_index in nb_multicore_to_do: - # results += (Parallel(n_jobs=nb_cores)(delayed(exec_one_benchmark) - # (core_index=core_index, - # ** - # benchmark_arguments_dictionaries[ - # core_index + step_index * nb_cores]) - # for core_index in range( - # min(nb_cores, nb_exps_to_do - step_index * nb_cores)))) - # else: - # results += [exec_one_benchmark_multicore(nb_cores=nb_cores, ** - # benchmark_arguments_dictionaries[0])] - # else: for arguments in benchmark_arguments_dictionaries: benchmark_results = exec_one_benchmark_mono_core( dataset_var=dataset_var, - track_tracebacks=track_tracebacks, + track_tracebacks=track_tracebacks, n_jobs=nb_cores, **arguments) analyze_iterations([benchmark_results], benchmark_arguments_dictionaries, stats_iter, @@ -697,7 +681,6 @@ def exec_benchmark(nb_cores, stats_iter, dataset_var.sample_ids, dataset_var.get_labels()) logging.info("Done:\t Analyzing predictions") - delete(benchmark_arguments_dictionaries, nb_cores, dataset_var) return results_mean_stds @@ -768,15 +751,9 @@ def exec_classif(arguments): # pragma: no cover args["split"], stats_iter_random_states) - # multiclass_labels, labels_combinations, indices_multiclass = multiclass.gen_multiclass_labels( - # dataset_var.get_labels(), multiclass_method, splits) - k_folds = execution.gen_k_folds(stats_iter, args["nb_folds"], stats_iter_random_states) - dataset_files = dataset.init_multiple_datasets(args["pathf"], - args["name"], - nb_cores) views, views_indices, all_views = execution.init_views(dataset_var, args[