Skip to content
Snippets Groups Projects
Commit 28450eb9 authored by Baptiste Bauvin's avatar Baptiste Bauvin
Browse files

Modified multiple things

parent 50a20310
Branches
Tags
No related merge requests found
......@@ -82,9 +82,9 @@ def getMetricsScoresBiclass(metrics, monoviewResults, multiviewResults):
trainScores = []
testScores = []
for classifierResult in monoviewResults:
trainScores.append(classifierResult[1][2][metric[0]][0])
testScores.append(classifierResult[1][2][metric[0]][1])
classifiersNames.append(classifierResult[1][0]+"-"+classifierResult[1][1][-1])
trainScores.append(classifierResult.metrics_scores[metric[0]][0])
testScores.append(classifierResult.metrics_scores[metric[0]][1])
classifiersNames.append(classifierResult.classifier_name+"-"+classifierResult.view_name)
for classifierResult in multiviewResults:
trainScores.append(classifierResult[2][metric[0]][0])
testScores.append(classifierResult[2][metric[0]][1])
......@@ -101,8 +101,8 @@ def getExampleErrorsBiclass(usedBenchmarkArgumentDictionary, monoviewResults, mu
exampleErrors = {}
trueLabels = usedBenchmarkArgumentDictionary["labels"]
for classifierResult in monoviewResults:
classifierName = classifierResult[1][0]+"-"+classifierResult[1][1][-1]
predictedLabels = classifierResult[1][3]
classifierName = classifierResult.classifier_name+"-"+classifierResult.view_name
predictedLabels = classifierResult.full_labels_pred
errorOnExamples = predictedLabels==trueLabels
errorOnExamples = errorOnExamples.astype(int)
unseenExamples = np.where(trueLabels==-100)[0]
......@@ -388,17 +388,17 @@ def analyzeMulticlass(results, statsIter, benchmarkArgumentDictionaries, nbExamp
if benchmarkArgumentDictionary["flag"] == flag:
trainIndices, testIndices, testMulticlassIndices = benchmarkArgumentDictionary["classificationIndices"]
for classifierResult in resMono:
classifierName = classifierResult[1][0]+"-"+classifierResult[1][1][-1]
classifierName = classifierResult.classifier_name+"-"+classifierResult.view_name
if classifierName not in multiclassResults[iterIndex]:
multiclassResults[iterIndex][classifierName] = np.zeros((nbExamples, nbLabels),dtype=int)
for exampleIndex in trainIndices:
label = classifierResult[1][3][exampleIndex]
label = classifierResult.full_labels_pred[exampleIndex]
if label == 1:
multiclassResults[iterIndex][classifierName][exampleIndex, classifierPositive] += 1
else:
multiclassResults[iterIndex][classifierName][exampleIndex, classifierNegative] += 1
for multiclassIndex, exampleIndex in enumerate(testMulticlassIndices):
label = classifierResult[1][5][multiclassIndex]
label = classifierResult.y_test_multiclass_pred[multiclassIndex]
if label == 1:
multiclassResults[iterIndex][classifierName][exampleIndex, classifierPositive] += 1
else:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment