diff --git a/multiview_platform/MonoMultiViewClassifiers/ResultAnalysis.py b/multiview_platform/MonoMultiViewClassifiers/ResultAnalysis.py index 6a63b8c836ae19c692f6d230cb29ea9c9fc20a3e..7fbf98ff97c6050ab7a08c837856a0173988187d 100644 --- a/multiview_platform/MonoMultiViewClassifiers/ResultAnalysis.py +++ b/multiview_platform/MonoMultiViewClassifiers/ResultAnalysis.py @@ -82,9 +82,9 @@ def getMetricsScoresBiclass(metrics, monoviewResults, multiviewResults): trainScores = [] testScores = [] for classifierResult in monoviewResults: - trainScores.append(classifierResult[1][2][metric[0]][0]) - testScores.append(classifierResult[1][2][metric[0]][1]) - classifiersNames.append(classifierResult[1][0]+"-"+classifierResult[1][1][-1]) + trainScores.append(classifierResult.metrics_scores[metric[0]][0]) + testScores.append(classifierResult.metrics_scores[metric[0]][1]) + classifiersNames.append(classifierResult.classifier_name+"-"+classifierResult.view_name) for classifierResult in multiviewResults: trainScores.append(classifierResult[2][metric[0]][0]) testScores.append(classifierResult[2][metric[0]][1]) @@ -101,8 +101,8 @@ def getExampleErrorsBiclass(usedBenchmarkArgumentDictionary, monoviewResults, mu exampleErrors = {} trueLabels = usedBenchmarkArgumentDictionary["labels"] for classifierResult in monoviewResults: - classifierName = classifierResult[1][0]+"-"+classifierResult[1][1][-1] - predictedLabels = classifierResult[1][3] + classifierName = classifierResult.classifier_name+"-"+classifierResult.view_name + predictedLabels = classifierResult.full_labels_pred errorOnExamples = predictedLabels==trueLabels errorOnExamples = errorOnExamples.astype(int) unseenExamples = np.where(trueLabels==-100)[0] @@ -388,17 +388,17 @@ def analyzeMulticlass(results, statsIter, benchmarkArgumentDictionaries, nbExamp if benchmarkArgumentDictionary["flag"] == flag: trainIndices, testIndices, testMulticlassIndices = benchmarkArgumentDictionary["classificationIndices"] for classifierResult in resMono: - classifierName = classifierResult[1][0]+"-"+classifierResult[1][1][-1] + classifierName = classifierResult.classifier_name+"-"+classifierResult.view_name if classifierName not in multiclassResults[iterIndex]: multiclassResults[iterIndex][classifierName] = np.zeros((nbExamples, nbLabels),dtype=int) for exampleIndex in trainIndices: - label = classifierResult[1][3][exampleIndex] + label = classifierResult.full_labels_pred[exampleIndex] if label == 1: multiclassResults[iterIndex][classifierName][exampleIndex, classifierPositive] += 1 else: multiclassResults[iterIndex][classifierName][exampleIndex, classifierNegative] += 1 for multiclassIndex, exampleIndex in enumerate(testMulticlassIndices): - label = classifierResult[1][5][multiclassIndex] + label = classifierResult.y_test_multiclass_pred[multiclassIndex] if label == 1: multiclassResults[iterIndex][classifierName][exampleIndex, classifierPositive] += 1 else: