diff --git a/multiview_platform/execute.py b/multiview_platform/execute.py
index 47f485fbdb3e729872d402f92e2b3bc76c85449c..5772286a7c562fed60466478956d673d4bd04145 100644
--- a/multiview_platform/execute.py
+++ b/multiview_platform/execute.py
@@ -1,15 +1,9 @@
 """This is the execution module, used to execute the code"""
 
-<<<<<<< HEAD
 
 def execute():
     import multiview_platform.versions as vs
     vs.test_versions()
-=======
-def exec():
-    import multiview_platform.versions as versions
-    versions.test_versions()
->>>>>>> 7b3e918b4fb2938657cae3093d95b1bd6fc461d4
     import sys
 
     from multiview_platform.mono_multi_view_classifiers import exec_classif
diff --git a/multiview_platform/mono_multi_view_classifiers/utils/execution.py b/multiview_platform/mono_multi_view_classifiers/utils/execution.py
index 7850b6a00dd1615dd3d5ee7ff5b76dcf076b7f1c..105dafa497162c9a9450a338f076989de2bf0c7c 100644
--- a/multiview_platform/mono_multi_view_classifiers/utils/execution.py
+++ b/multiview_platform/mono_multi_view_classifiers/utils/execution.py
@@ -24,680 +24,6 @@ def parse_the_args(arguments):
                                help='Path to the hdf5 dataset or database '
                                     'folder (default: %(default)s)',
                                default='../config_files/config.yml')
-<<<<<<< HEAD
-#     groupStandard.add_argument('-log', action='store_true',
-#                                help='Use option to activate logging to console')
-#     groupStandard.add_argument('--name', metavar='STRING', nargs='+', action='store',
-#                                help='Name of Database (default: %(default)s)',
-#                                default=['Plausible'])
-#     groupStandard.add_argument('--label', metavar='STRING', action='store',
-#                                help='Labeling the results directory (default: '
-#                                     '%(default)s)',
-#                                default='')
-#     groupStandard.add_argument('--type', metavar='STRING', action='store',
-#                                help='Type of database : .hdf5 or .csv ('
-#                                     'default: %(default)s)',
-#                                default='.hdf5')
-#     groupStandard.add_argument('--views', metavar='STRING', action='store',
-#                                nargs="+",
-#                                help='Name of the views selected for learning '
-#                                     '(default: %(default)s)',
-#                                default=[''])
-#     groupStandard.add_argument('--pathF', metavar='STRING', action='store',
-#                                help='Path to the hdf5 dataset or database '
-#                                     'folder (default: %(default)s)',
-#                                default='../data/')
-#     groupStandard.add_argument('--nice', metavar='INT', action='store',
-#                                type=int,
-#                                help='Niceness for the processes', default=0)
-#     groupStandard.add_argument('--random_state', metavar='STRING',
-#                                action='store',
-#                                help="The random state seed to use or the path "
-#                                     "to a pickle file where it is stored",
-#                                default=None)
-#     groupStandard.add_argument('--nbCores', metavar='INT', action='store',
-#                                help='Number of cores to use for parallel '
-#                                     'computing, -1 for all',
-#                                type=int, default=2)
-#     groupStandard.add_argument('--machine', metavar='STRING', action='store',
-#                                help='Type of machine on which the script runs',
-#                                default="PC")
-#     groupStandard.add_argument('-full', action='store_true',
-#                                help='Use option to use full dataset and no '
-#                                     'labels or view filtering')
-#     groupStandard.add_argument('-debug', action='store_true',
-#                                help='Use option to bebug implemented algorithms')
-#     groupStandard.add_argument('-add_noise', action='store_true',
-#                                help='Use option to add noise to the data')
-#     groupStandard.add_argument('--noise_std', metavar='FLOAT', nargs="+", action='store',
-#                                help='The std of the gaussian noise that will '
-#                                     'be added to the data.',
-#                                type=float, default=[0.0])
-#     groupStandard.add_argument('--res_dir', metavar='STRING', action='store',
-#                                help='The path to the result directory',
-#                                default="../results/")
-#
-#     groupClass = parser.add_argument_group('Classification arguments')
-#     groupClass.add_argument('--CL_multiclassMethod', metavar='STRING',
-#                             action='store',
-#                             help='Determine which multiclass method to use if '
-#                                  'the dataset is multiclass',
-#                             default="oneVersusOne")
-#     groupClass.add_argument('--CL_split', metavar='FLOAT', action='store',
-#                             help='Determine the split ratio between learning '
-#                                  'and validation sets',
-#                             type=float,
-#                             default=0.2)
-#     groupClass.add_argument('--CL_nbFolds', metavar='INT', action='store',
-#                             help='Number of folds in cross validation',
-#                             type=int, default=2)
-#     groupClass.add_argument('--CL_nbClass', metavar='INT', action='store',
-#                             help='Number of classes, -1 for all', type=int,
-#                             default=2)
-#     groupClass.add_argument('--CL_classes', metavar='STRING', action='store',
-#                             nargs="+",
-#                             help='Classes used in the dataset (names of the '
-#                                  'folders) if not filled, random classes will '
-#                                  'be '
-#                                  'selected', default=["yes", "no"])
-#     groupClass.add_argument('--CL_type', metavar='STRING', action='store',
-#                             nargs="+",
-#                             help='Determine whether to use multiview and/or '
-#                                  'monoview, or Benchmark classification',
-#                             default=['monoview', 'multiview'])
-#     groupClass.add_argument('--CL_algos_monoview', metavar='STRING',
-#                             action='store', nargs="+",
-#                             help='Determine which monoview classifier to use '
-#                                  'if empty, considering all',
-#                             default=[''])
-#     groupClass.add_argument('--CL_algos_multiview', metavar='STRING',
-#                             action='store', nargs="+",
-#                             help='Determine which multiview classifier to use '
-#                                  'if empty, considering all',
-#                             default=[''])
-#     groupClass.add_argument('--CL_statsiter', metavar='INT', action='store',
-#                             help="Number of iteration for each algorithm to "
-#                                  "mean preds on different random states. "
-#                                  "If using multiple cores, it's highly "
-#                                  "recommended to use statsiter mod nbCores == "
-#                                  "0",
-#                             type=int,
-#                             default=2)
-#     groupClass.add_argument('--CL_metrics', metavar='STRING', action='store',
-#                             nargs="+",
-#                             help='Determine which metrics to use, separate '
-#                                  'metric and configuration with ":". '
-#                                  'If multiple, separate with space. If no '
-#                                  'metric is specified, '
-#                                  'considering all'
-#                             , default=[''])
-#     groupClass.add_argument('--CL_metric_princ', metavar='STRING',
-#                             action='store',
-#                             help='Determine which metric to use for '
-#                                  'randomSearch and optimization',
-#                             default="f1_score")
-#     groupClass.add_argument('--CL_HPS_iter', metavar='INT', action='store',
-#                             help='Determine how many hyper parameters '
-#                                  'optimization tests to do',
-#                             type=int, default=2)
-#     groupClass.add_argument('--CL_HPS_type', metavar='STRING', action='store',
-#                             help='Determine which hyperparamter search '
-#                                  'function use',
-#                             default="randomizedSearch")
-#
-#     groupRF = parser.add_argument_group('Random Forest arguments')
-#     groupRF.add_argument('--RF_trees', metavar='INT', type=int, action='store',
-#                          help='Number max trees',nargs="+",
-#                          default=[25])
-#     groupRF.add_argument('--RF_max_depth', metavar='INT', type=int,
-#                          action='store',nargs="+",
-#                          help='Max depth for the trees',
-#                          default=[5])
-#     groupRF.add_argument('--RF_criterion', metavar='STRING', action='store',
-#                          help='Criterion for the trees',nargs="+",
-#                          default=["entropy"])
-#
-#     groupSVMLinear = parser.add_argument_group('Linear SVM arguments')
-#     groupSVMLinear.add_argument('--SVML_C', metavar='INT', type=int,
-#                                 action='store', nargs="+", help='Penalty parameter used',
-#                                 default=[1])
-#
-#     groupSVMRBF = parser.add_argument_group('SVW-RBF arguments')
-#     groupSVMRBF.add_argument('--SVMRBF_C', metavar='INT', type=int,
-#                              action='store', nargs="+", help='Penalty parameter used',
-#                              default=[1])
-#
-#     groupSVMPoly = parser.add_argument_group('Poly SVM arguments')
-#     groupSVMPoly.add_argument('--SVMPoly_C', metavar='INT', type=int,
-#                               action='store', nargs="+", help='Penalty parameter used',
-#                               default=[1])
-#     groupSVMPoly.add_argument('--SVMPoly_deg', nargs="+", metavar='INT', type=int,
-#                               action='store', help='Degree parameter used',
-#                               default=[2])
-#
-#     groupAdaboost = parser.add_argument_group('Adaboost arguments')
-#     groupAdaboost.add_argument('--Ada_n_est', metavar='INT', type=int,
-#                                action='store', nargs="+", help='Number of estimators',
-#                                default=[2])
-#     groupAdaboost.add_argument('--Ada_b_est', metavar='STRING', action='store',
-#                                help='Estimators',nargs="+",
-#                                default=['DecisionTreeClassifier'])
-#
-#     groupAdaboostPregen = parser.add_argument_group('AdaboostPregen arguments')
-#     groupAdaboostPregen.add_argument('--AdP_n_est', metavar='INT', type=int,
-#                                      action='store',nargs="+",
-#                                      help='Number of estimators',
-#                                      default=[100])
-#     groupAdaboostPregen.add_argument('--AdP_b_est', metavar='STRING',
-#                                      action='store',nargs="+",
-#                                      help='Estimators',
-#                                      default=['DecisionTreeClassifier'])
-#     groupAdaboostPregen.add_argument('--AdP_stumps', metavar='INT', type=int,
-#                                      action='store',nargs="+",
-#                                      help='Number of stumps inthe '
-#                                           'pregenerated dataset',
-#                                      default=[1])
-#
-#     groupAdaboostGraalpy = parser.add_argument_group(
-#         'AdaboostGraalpy arguments')
-#     groupAdaboostGraalpy.add_argument('--AdG_n_iter', metavar='INT', type=int,
-#                                       action='store',nargs="+",
-#                                       help='Number of estimators',
-#                                       default=[100])
-#     groupAdaboostGraalpy.add_argument('--AdG_stumps', metavar='INT', type=int,
-#                                       action='store',nargs="+",
-#                                       help='Number of stumps inthe '
-#                                            'pregenerated dataset',
-#                                       default=[1])
-#
-#     groupDT = parser.add_argument_group('Decision Trees arguments')
-#     groupDT.add_argument('--DT_depth', metavar='INT', type=int, action='store',
-#                          help='Determine max depth for Decision Trees',nargs="+",
-#                          default=[3])
-#     groupDT.add_argument('--DT_criterion', metavar='STRING', action='store',
-#                          help='Determine max depth for Decision Trees',nargs="+",
-#                          default=["entropy"])
-#     groupDT.add_argument('--DT_splitter', metavar='STRING', action='store',
-#                          help='Determine criterion for Decision Trees',nargs="+",
-#                          default=["random"])
-#
-#     groupDTP = parser.add_argument_group('Decision Trees pregen arguments')
-#     groupDTP.add_argument('--DTP_depth', metavar='INT', type=int,
-#                           action='store',nargs="+",
-#                           help='Determine max depth for Decision Trees',
-#                           default=[3])
-#     groupDTP.add_argument('--DTP_criterion', metavar='STRING', action='store',
-#                           help='Determine max depth for Decision Trees',nargs="+",
-#                           default=["entropy"])
-#     groupDTP.add_argument('--DTP_splitter', metavar='STRING', action='store',
-#                           help='Determine criterion for Decision Trees',nargs="+",
-#                           default=["random"])
-#     groupDTP.add_argument('--DTP_stumps', metavar='INT', type=int,
-#                           action='store',nargs="+",
-#                           help='Determine the number of stumps for Decision '
-#                                'Trees pregen',
-#                           default=[1])
-#
-#     groupSGD = parser.add_argument_group('SGD arguments')
-#     groupSGD.add_argument('--SGD_alpha', metavar='FLOAT', type=float,
-#                           action='store',nargs="+",
-#                           help='Determine alpha for SGDClassifier', default=[0.1])
-#     groupSGD.add_argument('--SGD_loss', metavar='STRING', action='store',
-#                           help='Determine loss for SGDClassifier',nargs="+",
-#                           default=['log'])
-#     groupSGD.add_argument('--SGD_penalty', metavar='STRING', action='store',
-#                           help='Determine penalty for SGDClassifier', nargs="+",
-#                           default=['l2'])
-#
-#     groupKNN = parser.add_argument_group('KNN arguments')
-#     groupKNN.add_argument('--KNN_neigh', metavar='INT', type=int,
-#                           action='store',nargs="+",
-#                           help='Determine number of neighbors for KNN',
-#                           default=[1])
-#     groupKNN.add_argument('--KNN_weights', nargs="+",
-#                           metavar='STRING', action='store',
-#                           help='Determine number of neighbors for KNN',
-#                           default=["distance"])
-#     groupKNN.add_argument('--KNN_algo', metavar='STRING', action='store',
-#                           help='Determine number of neighbors for KNN',
-#                           default=["auto"],nargs="+", )
-#     groupKNN.add_argument('--KNN_p', metavar='INT', nargs="+",
-#                           type=int, action='store',
-#                           help='Determine number of neighbors for KNN',
-#                           default=[1])
-#
-#     groupSCM = parser.add_argument_group('SCM arguments')
-#     groupSCM.add_argument('--SCM_max_rules', metavar='INT', type=int,
-#                           action='store', nargs="+",
-#                           help='Max number of rules for SCM', default=[1])
-#     groupSCM.add_argument('--SCM_p', metavar='FLOAT', type=float,
-#                           action='store', nargs="+",
-#                           help='Max number of rules for SCM', default=[1.0])
-#     groupSCM.add_argument('--SCM_model_type', metavar='STRING', action='store',
-#                           help='Max number of rules for SCM', nargs="+",
-#                           default=["conjunction"])
-#
-#     groupSCMPregen = parser.add_argument_group('SCMPregen arguments')
-#     groupSCMPregen.add_argument('--SCP_max_rules', metavar='INT', type=int,
-#                                 action='store',nargs="+",
-#                                 help='Max number of rules for SCM', default=[1])
-#     groupSCMPregen.add_argument('--SCP_p', metavar='FLOAT', type=float,
-#                                 action='store',nargs="+",
-#                                 help='Max number of rules for SCM', default=[1.0])
-#     groupSCMPregen.add_argument('--SCP_model_type', metavar='STRING',
-#                                 action='store',nargs="+",
-#                                 help='Max number of rules for SCM',
-#                                 default=["conjunction"])
-#     groupSCMPregen.add_argument('--SCP_stumps', metavar='INT', type=int,
-#                                 action='store',nargs="+",
-#                                 help='Number of stumps per attribute',
-#                                 default=[1])
-#
-#     groupSCMSparsity = parser.add_argument_group('SCMSparsity arguments')
-#     groupSCMSparsity.add_argument('--SCS_max_rules', metavar='INT', type=int,
-#                                   action='store',nargs="+",
-#                                   help='Max number of rules for SCM', default=[1])
-#     groupSCMSparsity.add_argument('--SCS_stumps', metavar='INT', type=int,
-#                                   action='store',nargs="+",
-#                                   help='Number of stumps', default=[1])
-#     groupSCMSparsity.add_argument('--SCS_p', metavar='FLOAT', type=float,
-#                                   action='store',nargs="+",
-#                                   help='Max number of rules for SCM',
-#                                   default=[1.0])
-#     groupSCMSparsity.add_argument('--SCS_model_type', metavar='STRING',
-#                                   action='store',nargs="+",
-#                                   help='Max number of rules for SCM',
-#                                   default=["conjunction"])
-#
-#     groupCQBoost = parser.add_argument_group('CQBoost arguments')
-#     groupCQBoost.add_argument('--CQB_mu', metavar='FLOAT', type=float,
-#                               action='store',nargs="+",
-#                               help='Set the mu parameter for CQBoost',
-#                               default=[0.001])
-#     groupCQBoost.add_argument('--CQB_epsilon', metavar='FLOAT', type=float,
-#                               action='store',nargs="+",
-#                               help='Set the epsilon parameter for CQBoost',
-#                               default=[1e-06])
-#     groupCQBoost.add_argument('--CQB_stumps', metavar='INT', type=int,
-#                               action='store',nargs="+",
-#                               help='Set the number of stumps for CQBoost',
-#                               default=[1])
-#     groupCQBoost.add_argument('--CQB_n_iter', metavar='INT', type=int,
-#                               action='store',nargs="+",
-#                               help='Set the maximum number of iteration in '
-#                                    'CQBoost',
-#                               default=[None])
-#
-#     groupCQBoostv2 = parser.add_argument_group('CQBoostv2 arguments')
-#     groupCQBoostv2.add_argument('--CQB2_mu', metavar='FLOAT', type=float,
-#                                 action='store',nargs="+",
-#                                 help='Set the mu parameter for CQBoostv2',
-#                                 default=[0.002])
-#     groupCQBoostv2.add_argument('--CQB2_epsilon', metavar='FLOAT', type=float,
-#                                 action='store',nargs="+",
-#                                 help='Set the epsilon parameter for CQBoostv2',
-#                                 default=[1e-08])
-#
-#     groupCQBoostv21 = parser.add_argument_group('CQBoostv21 arguments')
-#     groupCQBoostv21.add_argument('--CQB21_mu', metavar='FLOAT', type=float,
-#                                  action='store',nargs="+",
-#                                  help='Set the mu parameter for CQBoostv2',
-#                                  default=[0.001])
-#     groupCQBoostv21.add_argument('--CQB21_epsilon', metavar='FLOAT', type=float,
-#                                  action='store',nargs="+",
-#                                  help='Set the epsilon parameter for CQBoostv2',
-#                                  default=[1e-08])
-#
-#     groupQarBoost = parser.add_argument_group('QarBoost arguments')
-#     groupQarBoost.add_argument('--QarB_mu', metavar='FLOAT', type=float,
-#                                action='store',nargs="+",
-#                                help='Set the mu parameter for QarBoost',
-#                                default=[0.001])
-#     groupQarBoost.add_argument('--QarB_epsilon', metavar='FLOAT', type=float,
-#                                action='store',nargs="+",
-#                                help='Set the epsilon parameter for QarBoost',
-#                                default=[1e-08])
-#
-#     groupCGreed = parser.add_argument_group('CGreed arguments')
-#     groupCGreed.add_argument('--CGR_stumps', metavar='INT', type=int,
-#                              action='store',nargs="+",
-#                              help='Set the n_stumps_per_attribute parameter '
-#                                   'for CGreed',
-#                              default=[1])
-#     groupCGreed.add_argument('--CGR_n_iter', metavar='INT', type=int,
-#                              action='store',nargs="+",
-#                              help='Set the n_max_iterations parameter for '
-#                                   'CGreed',
-#                              default=[100])
-#
-#     groupCGDesc = parser.add_argument_group('CGDesc arguments')
-#     groupCGDesc.add_argument('--CGD_stumps', nargs="+",  metavar='INT', type=int,
-#                              action='store',
-#                              help='Set the n_stumps_per_attribute parameter '
-#                                   'for CGreed',
-#                              default=[1])
-#     groupCGDesc.add_argument('--CGD_n_iter', metavar='INT', type=int,
-#                              action='store', nargs="+",
-#                              help='Set the n_max_iterations parameter for '
-#                                   'CGreed',
-#                              default=[10])
-#
-#     groupCBBoost= parser.add_argument_group('CBBoost arguments')
-#     groupCBBoost.add_argument('--CBB_stumps', nargs="+", metavar='INT', type=int,
-#                              action='store',
-#                              help='Set the n_stumps_per_attribute parameter '
-#                                   'for CBBoost',
-#                              default=[1])
-#     groupCBBoost.add_argument('--CBB_n_iter', metavar='INT', type=int,
-#                              action='store', nargs="+",
-#                              help='Set the n_max_iterations parameter for '
-#                                   'CBBoost',
-#                              default=[100])
-#
-#     groupCGDescTree = parser.add_argument_group('CGDesc arguments')
-#     groupCGDescTree.add_argument('--CGDT_trees', metavar='INT', type=int,
-#                                  action='store', nargs="+",
-#                                  help='Set thenumber of trees for CGreed',
-#                                  default=[100])
-#     groupCGDescTree.add_argument('--CGDT_n_iter', metavar='INT', type=int,
-#                                  action='store', nargs="+",
-#                                  help='Set the n_max_iterations parameter for '
-#                                       'CGreed',
-#                                  default=[100])
-#     groupCGDescTree.add_argument('--CGDT_max_depth', metavar='INT', type=int,
-#                                  action='store', nargs="+",
-#                                  help='Set the n_max_iterations parameter for CGreed',
-#                                  default=[2])
-#
-#     groupMinCQGraalpyTree = parser.add_argument_group(
-#         'MinCQGraalpyTree arguments')
-#     groupMinCQGraalpyTree.add_argument('--MCGT_mu', metavar='FLOAT', type=float,
-#                                        action='store', nargs="+",
-#                                        help='Set the mu_parameter for MinCQGraalpy',
-#                                        default=[0.05])
-#     groupMinCQGraalpyTree.add_argument('--MCGT_trees', metavar='INT', type=int,
-#                                        action='store', nargs="+",
-#                                        help='Set the n trees parameter for MinCQGraalpy',
-#                                        default=[100])
-#     groupMinCQGraalpyTree.add_argument('--MCGT_max_depth', metavar='INT',
-#                                        type=int,nargs="+",
-#                                        action='store',
-#                                        help='Set the n_stumps_per_attribute parameter for MinCQGraalpy',
-#                                        default=[2])
-#
-#     groupCQBoostTree = parser.add_argument_group('CQBoostTree arguments')
-#     groupCQBoostTree.add_argument('--CQBT_mu', metavar='FLOAT', type=float,
-#                                   action='store',nargs="+",
-#                                   help='Set the mu parameter for CQBoost',
-#                                   default=[0.001])
-#     groupCQBoostTree.add_argument('--CQBT_epsilon', metavar='FLOAT', type=float,
-#                                   action='store',nargs="+",
-#                                   help='Set the epsilon parameter for CQBoost',
-#                                   default=[1e-06])
-#     groupCQBoostTree.add_argument('--CQBT_trees', metavar='INT', type=int,
-#                                   action='store',nargs="+",
-#                                   help='Set the number of trees for CQBoost',
-#                                   default=[100])
-#     groupCQBoostTree.add_argument('--CQBT_max_depth', metavar='INT', type=int,
-#                                   action='store',nargs="+",
-#                                   help='Set the number of stumps for CQBoost',
-#                                   default=[2])
-#     groupCQBoostTree.add_argument('--CQBT_n_iter', metavar='INT', type=int,
-#                                   action='store',nargs="+",
-#                                   help='Set the maximum number of iteration in CQBoostTree',
-#                                   default=[None])
-#
-#     groupSCMPregenTree = parser.add_argument_group('SCMPregenTree arguments')
-#     groupSCMPregenTree.add_argument('--SCPT_max_rules', metavar='INT', type=int,
-#                                     action='store',nargs="+",
-#                                     help='Max number of rules for SCM',
-#                                     default=[1])
-#     groupSCMPregenTree.add_argument('--SCPT_p', metavar='FLOAT', type=float,
-#                                     action='store',nargs="+",
-#                                     help='Max number of rules for SCM',
-#                                     default=[1.0])
-#     groupSCMPregenTree.add_argument('--SCPT_model_type', metavar='STRING',
-#                                     action='store',nargs="+",
-#                                     help='Max number of rules for SCM',
-#                                     default=["conjunction"])
-#     groupSCMPregenTree.add_argument('--SCPT_trees', metavar='INT', type=int,
-#                                     action='store',nargs="+",
-#                                     help='Number of stumps per attribute',
-#                                     default=[100])
-#     groupSCMPregenTree.add_argument('--SCPT_max_depth', metavar='INT', type=int,
-#                                     action='store',nargs="+",
-#                                     help='Max_depth of the trees',
-#                                     default=[1])
-#
-#     groupSCMSparsityTree = parser.add_argument_group(
-#         'SCMSparsityTree arguments')
-#     groupSCMSparsityTree.add_argument('--SCST_max_rules', metavar='INT',
-#                                       type=int,nargs="+",
-#                                       action='store',
-#                                       help='Max number of rules for SCM',
-#                                       default=[1])
-#     groupSCMSparsityTree.add_argument('--SCST_p', metavar='FLOAT', type=float,
-#                                       action='store',nargs="+",
-#                                       help='Max number of rules for SCM',
-#                                       default=[1.0])
-#     groupSCMSparsityTree.add_argument('--SCST_model_type', metavar='STRING',
-#                                       action='store',nargs="+",
-#                                       help='Max number of rules for SCM',
-#                                       default=["conjunction"])
-#     groupSCMSparsityTree.add_argument('--SCST_trees', metavar='INT', type=int,
-#                                       action='store',nargs="+",
-#                                       help='Number of stumps per attribute',
-#                                       default=[100])
-#     groupSCMSparsityTree.add_argument('--SCST_max_depth', metavar='INT',
-#                                       type=int,nargs="+",
-#                                       action='store',
-#                                       help='Max_depth of the trees',
-#                                       default=[1])
-#
-#     groupAdaboostPregenTree = parser.add_argument_group(
-#         'AdaboostPregenTrees arguments')
-#     groupAdaboostPregenTree.add_argument('--AdPT_n_est', metavar='INT',
-#                                          type=int,nargs="+",
-#                                          action='store',
-#                                          help='Number of estimators',
-#                                          default=[100])
-#     groupAdaboostPregenTree.add_argument('--AdPT_b_est', metavar='STRING',
-#                                          action='store',nargs="+",
-#                                          help='Estimators',
-#                                          default=['DecisionTreeClassifier'])
-#     groupAdaboostPregenTree.add_argument('--AdPT_trees', metavar='INT',
-#                                          type=int,nargs="+",
-#                                          action='store',
-#                                          help='Number of trees in the pregenerated dataset',
-#                                          default=[100])
-#     groupAdaboostPregenTree.add_argument('--AdPT_max_depth', metavar='INT',
-#                                          type=int,nargs="+",
-#                                          action='store',
-#                                          help='Number of stumps inthe pregenerated dataset',
-#                                          default=[3])
-#
-#     groupLasso = parser.add_argument_group('Lasso arguments')
-#     groupLasso.add_argument('--LA_n_iter', metavar='INT', type=int,
-#                             action='store',nargs="+",
-#                             help='Set the max_iter parameter for Lasso',
-#                             default=[1])
-#     groupLasso.add_argument('--LA_alpha', metavar='FLOAT', type=float,
-#                             action='store',nargs="+",
-#                             help='Set the alpha parameter for Lasso',
-#                             default=[1.0])
-#
-#     groupGradientBoosting = parser.add_argument_group(
-#         'Gradient Boosting arguments')
-#     groupGradientBoosting.add_argument('--GB_n_est', metavar='INT', type=int,
-#                                        action='store',nargs="+",
-#                                        help='Set the n_estimators_parameter for Gradient Boosting',
-#                                        default=[100])
-#
-#     groupMinCQ = parser.add_argument_group('MinCQ arguments')
-#     groupMinCQ.add_argument('--MCQ_mu', metavar='FLOAT', type=float,
-#                             action='store',nargs="+",
-#                             help='Set the mu_parameter for MinCQ',
-#                             default=[0.05])
-#     groupMinCQ.add_argument('--MCQ_stumps', metavar='INT', type=int,
-#                             action='store',nargs="+",
-#                             help='Set the n_stumps_per_attribute parameter for MinCQ',
-#                             default=[1])
-#
-#     groupMinCQGraalpy = parser.add_argument_group('MinCQGraalpy arguments')
-#     groupMinCQGraalpy.add_argument('--MCG_mu', metavar='FLOAT', type=float,
-#                                    action='store',nargs="+",
-#                                    help='Set the mu_parameter for MinCQGraalpy',
-#                                    default=[0.05])
-#     groupMinCQGraalpy.add_argument('--MCG_stumps', metavar='INT', type=int,
-#                                    action='store',nargs="+",
-#                                    help='Set the n_stumps_per_attribute parameter for MinCQGraalpy',
-#                                    default=[1])
-#
-#     groupQarBoostv3 = parser.add_argument_group('QarBoostv3 arguments')
-#     groupQarBoostv3.add_argument('--QarB3_mu', metavar='FLOAT', type=float,
-#                                  action='store',nargs="+",
-#                                  help='Set the mu parameter for QarBoostv3',
-#                                  default=[0.001])
-#     groupQarBoostv3.add_argument('--QarB3_epsilon', metavar='FLOAT', type=float,
-#                                  action='store',nargs="+",
-#                                  help='Set the epsilon parameter for QarBoostv3',
-#                                  default=[1e-08])
-#
-#     groupQarBoostNC = parser.add_argument_group('QarBoostNC arguments')
-#     groupQarBoostNC.add_argument('--QarBNC_mu', metavar='FLOAT', type=float,
-#                                  action='store',nargs="+",
-#                                  help='Set the mu parameter for QarBoostNC',
-#                                  default=[0.001])
-#     groupQarBoostNC.add_argument('--QarBNC_epsilon', metavar='FLOAT',
-#                                  type=float, action='store',nargs="+",
-#                                  help='Set the epsilon parameter for QarBoostNC',
-#                                  default=[1e-08])
-#
-#     groupQarBoostNC2 = parser.add_argument_group('QarBoostNC2 arguments')
-#     groupQarBoostNC2.add_argument('--QarBNC2_mu', metavar='FLOAT', type=float,
-#                                   action='store',nargs="+",
-#                                   help='Set the mu parameter for QarBoostNC2',
-#                                   default=[0.001])
-#     groupQarBoostNC2.add_argument('--QarBNC2_epsilon', metavar='FLOAT',
-#                                   type=float, action='store',nargs="+",
-#                                   help='Set the epsilon parameter for QarBoostNC2',
-#                                   default=[1e-08])
-#
-#     groupQarBoostNC3 = parser.add_argument_group('QarBoostNC3 arguments')
-#     groupQarBoostNC3.add_argument('--QarBNC3_mu', metavar='FLOAT', type=float,
-#                                   action='store',nargs="+",
-#                                   help='Set the mu parameter for QarBoostNC3',
-#                                   default=[0.001])
-#     groupQarBoostNC3.add_argument('--QarBNC3_epsilon', metavar='FLOAT',
-#                                   type=float, action='store',nargs="+",
-#                                   help='Set the epsilon parameter for QarBoostNC3',
-#                                   default=[1e-08])
-#
-# #
-# # multiview args
-# #
-#
-#     groupMumbo = parser.add_argument_group('Mumbo arguments')
-#     groupMumbo.add_argument('--MU_types', metavar='STRING', action='store',
-#                             nargs="+",
-#                             help='Determine which monoview classifier to use with Mumbo',
-#                             default=[''])
-#     groupMumbo.add_argument('--MU_config', metavar='STRING', action='store',
-#                             nargs='+',
-#                             help='Configuration for the monoview classifier in Mumbo'
-#                                  ' separate each classifier with sapce and each argument with:',
-#                             default=[''])
-#     groupMumbo.add_argument('--MU_iter', metavar='INT', action='store', nargs=3,
-#                             help='Max number of iteration, min number of iteration, convergence threshold',
-#                             type=float,
-#                             default=[10, 1, 0.01])
-#     groupMumbo.add_argument('--MU_combination', action='store_true',
-#                             help='Try all the monoview classifiers combinations for each view',
-#                             default=False)
-#
-#     groupFusion = parser.add_argument_group('fusion arguments')
-#     groupFusion.add_argument('--FU_types', metavar='STRING', action='store',
-#                              nargs="+",
-#                              help='Determine which type of fusion to use',
-#                              default=[''])
-#     groupEarlyFusion = parser.add_argument_group('Early fusion arguments')
-#     groupEarlyFusion.add_argument('--FU_early_methods', metavar='STRING',
-#                                   action='store', nargs="+",
-#                                   help='Determine which early fusion method of fusion to use',
-#                                   default=[''])
-#     groupEarlyFusion.add_argument('--FU_E_method_configs', metavar='STRING',
-#                                   action='store', nargs='+',
-#                                   help='Configuration for the early fusion methods separate '
-#                                        'method by space and values by :',
-#                                   default=[''])
-#     groupEarlyFusion.add_argument('--FU_E_cl_config', metavar='STRING',
-#                                   action='store', nargs='+',
-#                                   help='Configuration for the monoview classifiers '
-#                                        ' used separate classifier by space '
-#                                        'and configs must be of form argument1_name:value,'
-#                                        'argument2_name:value',
-#                                   default=[''])
-#     groupEarlyFusion.add_argument('--FU_E_cl_names', metavar='STRING',
-#                                   action='store', nargs='+',
-#                                   help='Name of the classifiers used for each early fusion method',
-#                                   default=[''])
-#
-#     groupLateFusion = parser.add_argument_group('Late fusion arguments')
-#     groupLateFusion.add_argument('--FU_late_methods', metavar='STRING',
-#                                  action='store', nargs="+",
-#                                  help='Determine which late fusion method of fusion to use',
-#                                  default=[''])
-#     groupLateFusion.add_argument('--FU_L_method_config', metavar='STRING',
-#                                  action='store', nargs='+',
-#                                  help='Configuration for the fusion method',
-#                                  default=[''])
-#     groupLateFusion.add_argument('--FU_L_cl_config', metavar='STRING',
-#                                  action='store', nargs='+',
-#                                  help='Configuration for the monoview classifiers used',
-#                                  default=[''])
-#     groupLateFusion.add_argument('--FU_L_cl_names', metavar='STRING',
-#                                  action='store', nargs="+",
-#                                  help='Names of the classifier used for late fusion',
-#                                  default=[''])
-#     groupLateFusion.add_argument('--FU_L_select_monoview', metavar='STRING',
-#                                  action='store',
-#                                  help='Determine which method to use to select the monoview classifiers',
-#                                  default="intersect")
-#
-#     groupFatLateFusion = parser.add_argument_group('Fat Late fusion arguments')
-#     groupFatLateFusion.add_argument('--FLF_weights', metavar='FLOAT',
-#                                     action='store', nargs="+",
-#                                     help='Determine the weights of each monoview decision for FLF',
-#                                     type=float,
-#                                     default=[])
-#
-#     groupFatSCMLateFusion = parser.add_argument_group(
-#         'Fat SCM Late fusion arguments')
-#     groupFatSCMLateFusion.add_argument('--FSCMLF_p', metavar='FLOAT',
-#                                        action='store',
-#                                        help='Determine the p argument of the SCM',
-#                                        type=float,
-#                                        default=0.5)
-#     groupFatSCMLateFusion.add_argument('--FSCMLF_max_attributes', metavar='INT',
-#                                        action='store',
-#                                        help='Determine the maximum number of aibutes used by the SCM',
-#                                        type=int,
-#                                        default=4)
-#     groupFatSCMLateFusion.add_argument('--FSCMLF_model', metavar='STRING',
-#                                        action='store',
-#                                        help='Determine the model type of the SCM',
-#                                        default="conjunction")
-#
-#     groupDisagreeFusion = parser.add_argument_group(
-#         'Disagreement based fusion arguments')
-#     groupDisagreeFusion.add_argument('--DGF_weights', metavar='FLOAT',
-#                                      action='store', nargs="+",
-#                                      help='Determine the weights of each monoview decision for DFG',
-#                                      type=float,
-#                                      default=[])
-
-=======
->>>>>>> 7b3e918b4fb2938657cae3093d95b1bd6fc461d4
     args = parser.parse_args(arguments)
     return args
 
diff --git a/multiview_platform/mono_multi_view_classifiers/utils/get_multiview_db.py b/multiview_platform/mono_multi_view_classifiers/utils/get_multiview_db.py
index d91d1b51d5d7ef23dd2a66c656013052ee50068f..02a084a7c229832338458b2a1070deaf954c1e79 100644
--- a/multiview_platform/mono_multi_view_classifiers/utils/get_multiview_db.py
+++ b/multiview_platform/mono_multi_view_classifiers/utils/get_multiview_db.py
@@ -90,13 +90,8 @@ def makeMeNoisy(viewData, random_state, percentage=5):
     return noisyViewData
 
 
-<<<<<<< HEAD
-def getPlausibleDBhdf5(features, pathF, name, NB_CLASS=3, LABELS_NAME="",
-                       random_state=None, full=True, add_noise=False,
-=======
 def get_plausible_db_hdf5(features, pathF, name, NB_CLASS=3, LABELS_NAME="",
                        randomState=None, full=True, add_noise=False,
->>>>>>> 7b3e918b4fb2938657cae3093d95b1bd6fc461d4
                        noise_std=0.15, nbView=3,
                    nbClass=2, datasetLength=100, randomStateInt=42, nbFeatures = 10):
     """Used to generate a plausible dataset to test the algorithms"""
@@ -472,14 +467,9 @@ def add_gaussian_noise(dataset_file, random_state, path_f, dataset_name,
     return noisy_dataset, dataset_name + "_noised"
 
 
-<<<<<<< HEAD
-def getClassicDBcsv(views, pathF, nameDB, NB_CLASS, askedLabelsNames,
-                    random_state, full=False, add_noise=False, noise_std=0.15,
-=======
 def get_classic_db_csv(views, pathF, nameDB, NB_CLASS, askedLabelsNames,
-                    randomState, full=False, add_noise=False, noise_std=0.15,
->>>>>>> 7b3e918b4fb2938657cae3093d95b1bd6fc461d4
-                    delimiter=","):
+                       randomState, full=False, add_noise=False, noise_std=0.15,
+                        delimiter=","):
     # TODO : Update this one
     labels_names = np.genfromtxt(pathF + nameDB + "-labels-names.csv",
                                 dtype='str', delimiter=delimiter)
diff --git a/multiview_platform/mono_multi_view_classifiers/utils/hyper_parameter_search.py b/multiview_platform/mono_multi_view_classifiers/utils/hyper_parameter_search.py
index dee2cd7d8dbab3a000cad4216e8e67156d3110af..114764faf8c6121106f8dcbddebb9866fa5d6b64 100644
--- a/multiview_platform/mono_multi_view_classifiers/utils/hyper_parameter_search.py
+++ b/multiview_platform/mono_multi_view_classifiers/utils/hyper_parameter_search.py
@@ -108,35 +108,6 @@ def randomized_search_x(X, y, framework, random_state, output_file_name, classif
         min_list = np.array(
             [min(nb_possible_combination, n_iter) for nb_possible_combination in
              nb_possible_combinations])
-<<<<<<< HEAD
-        random_search = MultiviewCompatibleRandomizedSearchCV(
-            estimator,
-            n_iter=int(np.sum(min_list)),
-            param_distributions=params_dict,
-            refit=True,
-            n_jobs=nb_cores, scoring=scorer,
-            cv=folds, random_state=random_state,
-            learning_indices=learning_indices,
-            view_indices=view_indices,
-            framework=framework)
-        detector = random_search.fit(X, y)
-
-        best_params = dict((key, value) for key, value in
-                          estimator.genBestParams(detector).items() if
-                          key is not "random_state")
-
-        scores_array = detector.cv_results_['mean_test_score']
-        params = estimator.genParamsFromDetector(detector)
-
-        gen_heat_maps(params, scores_array, output_file_name)
-        best_estimator = detector.best_estimator_
-    else:
-        best_estimator = estimator
-        best_params = {}
-    test_folds_preds = get_test_folds_preds(X, y, folds, best_estimator,
-                                            framework, learning_indices)
-    return best_params, test_folds_preds
-=======
         random_search = MultiviewCompatibleRandomizedSearchCV(estimator,
                                                              n_iter=int(np.sum(min_list)),
                                                              param_distributions=params_dict,
@@ -161,7 +132,6 @@ def randomized_search_x(X, y, framework, random_state, output_file_name, classif
     testFoldsPreds = get_test_folds_preds(X, y, folds, best_estimator,
                                           framework, learning_indices)
     return best_params, testFoldsPreds
->>>>>>> 7b3e918b4fb2938657cae3093d95b1bd6fc461d4
 
 
 from sklearn.base import clone
diff --git a/multiview_platform/tests/test_ExecClassif.py b/multiview_platform/tests/test_ExecClassif.py
index acb10c4f4432c667fb08873f7671483808f52ecb..24d4f0cf6c8eba250c1b0863545cf157ae8d5cc2 100644
--- a/multiview_platform/tests/test_ExecClassif.py
+++ b/multiview_platform/tests/test_ExecClassif.py
@@ -130,11 +130,6 @@ class Test_InitArgumentDictionaries(unittest.TestCase):
         ]
         self.assertEqual(arguments["multiview"][0], expected_output[0])
 
-<<<<<<< HEAD
-def fakeBenchmarkExec(core_index=-1, a=7, args=1):
-    return [core_index, a]
-=======
->>>>>>> 7b3e918b4fb2938657cae3093d95b1bd6fc461d4
 
     def test_init_argument_dictionaries_multiview_complex(self):
         self.multiview_classifier_arg_value = {"fake_value_2":"plif", "plaf":"plouf"}
@@ -213,11 +208,6 @@ def fakeBenchmarkExec(core_index=-1, a=7, args=1):
 def fakeBenchmarkExec(core_index=-1, a=7, args=1):
     return [core_index, a]
 
-<<<<<<< HEAD
-def fakeBenchmarkExec_mutlicore(nb_cores=-1, a=6, args=1):
-    return [nb_cores, a]
-=======
->>>>>>> 7b3e918b4fb2938657cae3093d95b1bd6fc461d4
 
 def fakeBenchmarkExec_mutlicore(nb_cores=-1, a=6, args=1):
     return [nb_cores, a]
@@ -270,17 +260,10 @@ class Test_execBenchmark(unittest.TestCase):
         res = exec_classif.exec_benchmark(2, 1, 2, cls.argument_dictionaries,
                                          [[[1, 2], [3, 4, 5]]], 5, 6, 7, 8, 9,
                                          10, cls.Dataset,
-<<<<<<< HEAD
                                          exec_one_benchmark=fakeBenchmarkExec,
                                          exec_one_benchmark_multicore=fakeBenchmarkExec_mutlicore,
                                          exec_one_benchmark_mono_core=fakeBenchmarkExec_monocore,
                                          get_results=fakegetResults,
-=======
-                                          exec_one_benchmark=fakeBenchmarkExec,
-                                          exec_one_benchmark_multicore=fakeBenchmarkExec_mutlicore,
-                                          exec_one_benchmark_mono_core=fakeBenchmarkExec_monocore,
-                                          get_results=fakegetResults,
->>>>>>> 7b3e918b4fb2938657cae3093d95b1bd6fc461d4
                                          delete=fakeDelete)
         cls.assertEqual(res, 3)
 
@@ -292,17 +275,10 @@ class Test_execBenchmark(unittest.TestCase):
         res = exec_classif.exec_benchmark(2, 2, 2, cls.argument_dictionaries,
                                          [[[1, 2], [3, 4, 5]]], 5, 6, 7, 8, 9,
                                          10, cls.Dataset,
-<<<<<<< HEAD
                                          exec_one_benchmark=fakeBenchmarkExec,
                                          exec_one_benchmark_multicore=fakeBenchmarkExec_mutlicore,
                                          exec_one_benchmark_monoCore=fakeBenchmarkExec_monocore,
                                          get_results=fakegetResults,
-=======
-                                          exec_one_benchmark=fakeBenchmarkExec,
-                                          exec_one_benchmark_multicore=fakeBenchmarkExec_mutlicore,
-                                          exec_one_benchmark_mono_core=fakeBenchmarkExec_monocore,
-                                          get_results=fakegetResults,
->>>>>>> 7b3e918b4fb2938657cae3093d95b1bd6fc461d4
                                          delete=fakeDelete)
         cls.assertEqual(res, 3)
 
@@ -310,17 +286,10 @@ class Test_execBenchmark(unittest.TestCase):
         res = exec_classif.exec_benchmark(2, 1, 1, cls.argument_dictionaries,
                                          [[[1, 2], [3, 4, 5]]], 5, 6, 7, 8, 9,
                                          10, cls.Dataset,
-<<<<<<< HEAD
                                          exec_one_benchmark=fakeBenchmarkExec,
                                          exec_one_benchmark_multicore=fakeBenchmarkExec_mutlicore,
                                          exec_oneBenchmark_mono_core=fakeBenchmarkExec_monocore,
                                          get_results=fakegetResults,
-=======
-                                          exec_one_benchmark=fakeBenchmarkExec,
-                                          exec_one_benchmark_multicore=fakeBenchmarkExec_mutlicore,
-                                          exec_one_benchmark_mono_core=fakeBenchmarkExec_monocore,
-                                          get_results=fakegetResults,
->>>>>>> 7b3e918b4fb2938657cae3093d95b1bd6fc461d4
                                          delete=fakeDelete)
         cls.assertEqual(res, 3)
 
@@ -333,26 +302,15 @@ class Test_execBenchmark(unittest.TestCase):
         os.rmdir(path)
 
 
-<<<<<<< HEAD
 def fakeExecMono(directory, name, labels_names, classification_indices, k_folds,
                  coreIndex, type, pathF, random_state, labels,
-=======
-def fakeExecMono(directory, name, labelsNames, classificationIndices, kFolds,
-                 coreIndex, type, pathF, randomState, labels,
->>>>>>> 7b3e918b4fb2938657cae3093d95b1bd6fc461d4
                  hyper_param_search="try", metrics="try", nIter=1, **arguments):
     return ["Mono", arguments]
 
 
-<<<<<<< HEAD
 def fakeExecMulti(directory, coreIndex, name, classification_indices, k_folds,
                   type, pathF, labels_dictionary,
                   random_state, labels, hyper_param_search="", metrics=None,
-=======
-def fakeExecMulti(directory, coreIndex, name, classificationIndices, kFolds,
-                  type, pathF, LABELS_DICTIONARY,
-                  randomState, labels, hyper_param_search="", metrics=None,
->>>>>>> 7b3e918b4fb2938657cae3093d95b1bd6fc461d4
                   nIter=1, **arguments):
     return ["Multi", arguments]
 
@@ -387,7 +345,6 @@ class Test_execOneBenchmark(unittest.TestCase):
 
     def test_simple(cls):
         flag, results = exec_classif.exec_one_benchmark(core_index=10,
-<<<<<<< HEAD
                                                       labels_dictionary={
                                                                    0: "a",
                                                                    1: "b"},
@@ -401,21 +358,6 @@ class Test_execOneBenchmark(unittest.TestCase):
                                                                hyper_param_search="try",
                                                                metrics="try",
                                                                argument_dictionaries={
-=======
-                                                        labels_dictionary={
-                                                                   0: "a",
-                                                                   1: "b"},
-                                                      directory="multiview_platform/tests/tmp_tests/",
-                                                        classification_indices=(
-                                                               [1, 2, 3, 4],
-                                                               [0, 5, 6, 7, 8]),
-                                                               args=cls.args,
-                                                        k_folds=FakeKfold(),
-                                                        random_state="try",
-                                                        hyper_param_search="try",
-                                                               metrics="try",
-                                                        argument_dictionaries={
->>>>>>> 7b3e918b4fb2938657cae3093d95b1bd6fc461d4
                                                                    "Monoview": [
                                                                        {
                                                                            "try": 0},
@@ -427,26 +369,16 @@ class Test_execOneBenchmark(unittest.TestCase):
                                                                            "try4": 10}]},
                                                       benchmark="try",
                                                       views="try",
-<<<<<<< HEAD
                                                       views_indices="try",
-=======
-                                                        views_indices="try",
->>>>>>> 7b3e918b4fb2938657cae3093d95b1bd6fc461d4
                                                       flag=None,
                                                       labels=np.array(
                                                                    [0, 1, 2, 1,
                                                                     2, 2, 2, 12,
                                                                     1, 2, 1, 1,
                                                                     2, 1, 21]),
-<<<<<<< HEAD
                                                       exec_monoview_multicore=fakeExecMono,
                                                       exec_multiview_multicore=fakeExecMulti,
                                                       init_multiview_arguments=fakeInitMulti)
-=======
-                                                        exec_monoview_multicore=fakeExecMono,
-                                                      exec_multiview_multicore=fakeExecMulti,
-                                                        init_multiview_arguments=fakeInitMulti)
->>>>>>> 7b3e918b4fb2938657cae3093d95b1bd6fc461d4
 
         cls.assertEqual(flag, None)
         cls.assertEqual(results ,
@@ -480,11 +412,8 @@ class Test_execOneBenchmark_multicore(unittest.TestCase):
 
     def test_simple(cls):
         flag, results = exec_classif.exec_one_benchmark_multicore(
-<<<<<<< HEAD
             nbCores=2,
-=======
-            nb_cores=2,
->>>>>>> 7b3e918b4fb2938657cae3093d95b1bd6fc461d4
+
             labels_dictionary={0: "a", 1: "b"},
             directory="multiview_platform/tests/tmp_tests/",
             classification_indices=([1, 2, 3, 4], [0, 10, 20, 30, 40]),