diff --git a/multiview_platform/MonoMultiViewClassifiers/ExecClassif.py b/multiview_platform/MonoMultiViewClassifiers/ExecClassif.py index ed9d7849f1e208ff8d7d6c23ef8aadbf077c0887..64c9f085ef20f139f1ce9c4f1f3f96fdba16e452 100644 --- a/multiview_platform/MonoMultiViewClassifiers/ExecClassif.py +++ b/multiview_platform/MonoMultiViewClassifiers/ExecClassif.py @@ -459,8 +459,10 @@ def execClassif(arguments): getDatabase = execution.getDatabaseFunction(args.name,args.type) - DATASET, LABELS_DICTIONARY = getDatabase(args.views, args.pathF, args.name, args.CL_nbClass, + + DATASET, LABELS_DICTIONARY, datasetname = getDatabase(args.views, args.pathF, args.name, args.CL_nbClass, args.CL_classes, randomState, args.full, args.add_noise, args.noise_std) + args.name = datasetname splits = execution.genSplits(DATASET.get("Labels").value, args.CL_split, statsIterRandomStates) diff --git a/multiview_platform/MonoMultiViewClassifiers/utils/GetMultiviewDb.py b/multiview_platform/MonoMultiViewClassifiers/utils/GetMultiviewDb.py index 0086ae5cf4babc132ca10a0fcae294781bef1897..1143c2ea080127ea407cf6e3a1686d64b56c55e5 100644 --- a/multiview_platform/MonoMultiViewClassifiers/utils/GetMultiviewDb.py +++ b/multiview_platform/MonoMultiViewClassifiers/utils/GetMultiviewDb.py @@ -125,7 +125,7 @@ def getPlausibleDBhdf5(features, pathF, name, NB_CLASS=3, LABELS_NAME="", random datasetFile.close() datasetFile = h5py.File(pathF + "Plausible.hdf5", "r") LABELS_DICTIONARY = {0: "No", 1: "Yes", 2:"Maybe"} - return datasetFile, LABELS_DICTIONARY + return datasetFile, LABELS_DICTIONARY, "Plausible" # def getFakeDBhdf5(features, pathF, name, NB_CLASS, LABELS_NAME, randomState): @@ -322,10 +322,10 @@ def getClassicDBhdf5(views, pathF, nameDB, NB_CLASS, askedLabelsNames, randomSta enumerate(datasetFile.get("Labels").attrs["names"])) if add_noise: - datasetFile = add_gaussian_noise(datasetFile, randomState, pathF, dataset_name, noise_std) + datasetFile, dataset_name = add_gaussian_noise(datasetFile, randomState, pathF, dataset_name, noise_std) else: pass - return datasetFile, labelsDictionary + return datasetFile, labelsDictionary, dataset_name def add_gaussian_noise(dataset_file, random_state, path_f, dataset_name, noise_std=0.15): @@ -353,7 +353,7 @@ def add_gaussian_noise(dataset_file, random_state, path_f, dataset_name, noise_s noised_data = np.where(noised_data>view_limits[:,1], view_limits[:,1], noised_data) noisy_dataset[view_name][...] = noised_data final_shape = noised_data.shape - return noisy_dataset + return noisy_dataset, dataset_name+"_noised"