diff --git a/README.md b/README.md index 5064231a0b7ba624026bf9f34a5ac579a6269169..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 100644 --- a/README.md +++ b/README.md @@ -1,98 +0,0 @@ -[](http://www.gnu.org/licenses/gpl-3.0) -[](https://gitlab.lis-lab.fr/baptiste.bauvin/summit/badges/develop/pipeline.svg) -# Supervised MultiModal Integration Tool's Readme - -This project aims to be an easy-to-use solution to run a prior benchmark on a dataset and evaluate mono- & multi-view algorithms capacity to classify it correctly. - -## Getting Started - -### Prerequisites (will be automatically installed) - -To be able to use this project, you'll need : - -* [Python 3.6](https://docs.python.org/3/) - -And the following python modules : - -* [numpy](http://www.numpy.org/), [scipy](https://scipy.org/), -* [matplotlib](http://matplotlib.org/) - Used to plot results, -* [sklearn](http://scikit-learn.org/stable/) - Used for the monoview classifiers, -* [joblib](https://pypi.python.org/pypi/joblib) - Used to compute on multiple threads, -* [h5py](https://www.h5py.org) - Used to generate HDF5 datasets on hard drive and use them to spare RAM, -* [pickle](https://docs.python.org/3/library/pickle.html) - Used to store some results, -* [pandas](https://pandas.pydata.org/) - Used to manipulate data efficiently, -* [six](https://pypi.org/project/six/) - -* [m2r](https://pypi.org/project/m2r/) - Used to generate documentation from the readme, -* [docutils](https://pypi.org/project/docutils/) - Used to generate documentation, -* [pyyaml](https://pypi.org/project/PyYAML/) - Used to read the config files, -* [plotly](https://plot.ly/) - Used to generate interactive HTML visuals, -* [tabulate](https://pypi.org/project/tabulate/) - Used to generated the confusion matrix. - - -### Installing - -Once you cloned the project from the [gitlab repository](https://gitlab.lis-lab.fr/baptiste.bauvin/summit/), you just have to use : - -``` -cd path/to/summit/ -pip install -e . -``` -In the `summit` directory to install SuMMIT and its dependencies. - -### Running on simulated data - -In order to run it you'll need to try on **simulated** data with the command -```python -from multiview_platform.execute import execute -execute("example 1") -``` -This will run the first example. - -For more information about the examples, see the [documentation](http://baptiste.bauvin.pages.lis-lab.fr/summit/). -Results will be stored in the results directory of the installation path : -`path/to/summit/multiview_platform/examples/results`. - -The documentation proposes a detailed interpretation of the results through [6 tutorials](http://baptiste.bauvin.pages.lis-lab.fr/summit/). - -### Discovering the arguments - -All the arguments of the platform are stored in a YAML config file. Some config files are given as examples. -The file stored in `summit/config_files/config.yml` is documented and it is highly recommended -to read it carefully before playing around with the parameters. - -You can create your own configuration file. In order to run the platform with it, run : -```python -from multiview_platform.execute import execute -execute(config_path="/absolute/path/to/your/config/file") -``` - -For further information about classifier-specific arguments, see the [documentation](http://baptiste.bauvin.pages.lis-lab.fr/summit/). - - -### Dataset compatibility - -In order to start a benchmark on your own dataset, you need to format it so SuMMIT can use it. To do so, a [python script](https://gitlab.lis-lab.fr/baptiste.bauvin/summit/-/blob/master/format_dataset.py) is provided. - -For more information, see [Example 6](http://baptiste.bauvin.pages.lis-lab.fr/summit/tutorials/example4.html) - -### Running on your dataset - -Once you have formatted your dataset, to run SuMMIT on it you need to modify the config file as -```yaml -name: ["your_file_name"] -* -pathf: "path/to/your/dataset" -``` -This will run a full benchmark on your dataset using all available views and labels. - -It is highly recommended to follow the documentation's [tutorials](http://baptiste.bauvin.pages.lis-lab.fr/summit/tutorials/index.html) to learn the use of each parameter. - - -## Authors - -* **Baptiste BAUVIN** -* **Dominique BENIELLI** - -## Restless beta-tester - -* **Alexis PROD'HOMME** diff --git a/docs/source/tutorials/example0.rst b/docs/source/tutorials/example0.rst index 0fc1e6b67b72b6fd2b1f650d0a7e0a7b8996fe5c..dbac9f92ad83aa5472d3e9b4540bc0b4b3179fe6 100644 --- a/docs/source/tutorials/example0.rst +++ b/docs/source/tutorials/example0.rst @@ -14,7 +14,7 @@ This dataset consists in 3 views: Running |platf| on digits ------------------------- -To run |platf| on digits, one has to run : +To run |platf| on digits, we have to run : .. code-block:: python @@ -25,9 +25,9 @@ This will start a benchmark with this :base_source:`config file <multiview_platf By running |platf| with this configuration, one runs : -- One decision tree on each view, -- One early fusion multiview classifier that learns on the concatenation of all the views, -- One late fusion classifier that learn one monoview lassifier by view and aggregates their decisions in a majority vote. +- one decision tree on each view, +- one early fusion multiview classifier that learns on the concatenation of all the views, +- one late fusion classifier that learn one monoview lassifier by view and aggregates their decisions in a majority vote.