Skip to content
Snippets Groups Projects
Select Git revision
  • 4675f5859adfe2c78f9650fc5a835a87ea77de90
  • master default
  • object
  • develop protected
  • private_algos
  • cuisine
  • SMOTE
  • revert-76c4cca5
  • archive protected
  • no_graphviz
  • 0.0.1
11 results

Feature Extraction - ColorHistogram.ipynb

Blame
  • ResultAnalysis.py 1.09 KiB
    # Import built-in modules
    import time
    import pylab
    
    # Import third party modules
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    
    # Author-Info
    __author__ 	= "Baptiste Bauvin"
    __status__ 	= "Prototype"                           # Production, Development, Prototype
    
    
    def resultAnalysis(benchmark, results):
        mono, multi = results
        names = [res[1][0]+res[1][3] for res in mono]
        names+=[type_ if type_ != "Fusion" else type_+a["fusionType"]+a["fusionMethod"] for type_, a, b, c, d in multi]
        nbResults = len(mono)+len(multi)
        accuracies = [float(res[1][1]) for res in mono]
        accuracies += [float(accuracy) for a, b, c, d, accuracy in multi]
        f = pylab.figure(figsize=(40, 30))
        fig = plt.gcf()
        fig.subplots_adjust(bottom=105.0, top=105.01)
        ax = f.add_axes([0.1, 0.1, 0.8, 0.8])
        ax.set_title("Accuracies on validation set for each classifier")
        ax.bar(range(nbResults), accuracies, align='center')
        ax.set_xticks(range(nbResults))
        ax.set_xticklabels(names, rotation="vertical")
    
        f.savefig("Results/poulet"+time.strftime("%Y%m%d-%H%M%S")+".png")